NIPPON THOMPSON CO., LTD. (JAPAN)

Zentrale : 19-13 Takanawa 2-chome Minato-ku Tokyo 108-8586, Japan Tel. : +81 (0)3-3448-5850

Fax : +81 (0)3-3447-7637
E-Mail : ntt@ikonet.co.jp
URL : http://www.ikont.co.jp/eg

IKO INTERNATIONAL, INC. (USA)

USA Ostküste (Vertriebszentrale)

91 Walsh Drive Parsippany, NJ 07054, USA

Tel. : +1 973-402-0254
Toll Free : 1-800-922-0337
Fax : +1 973-402-0441
E-Mail : eco@ikonet.co.ip

USA Mittlerer Westen

101 Mark Street Suite-G, Wood Dale, IL 60191, USA

Tel. : +1 630-766-6464
Toll Free : 1-800-323-6694
Fax : +1 630-766-6869
F-Mail : mwo@ikonet.co.ii

Vertriebsbüro Minnesota

1500 McAndrews Road West, Suite 210 Burnsville, MN 55337, USA

Tel. : +1 952-892-8415 Toll Free : 1-800-323-6694 Fax : +1 952-892-1722 E-Mail : mwo@ikonet.co.ji

USA Westküste

9830 Norwalk Boulevard, Suite 198 Santa Fe Springs, CA 90670, USA

SA

Toll Free : 1-800-252-3665 Fax : +1 562-941-4027 E-Mail : wco@ikonet.co.jp

+1 562-941-1019

Vertriebsbüro Silicon Valley 1500 Wyatt Drive, Suite 10 Santa Clara, CA 95054, USA

Tel. : +1 408-492-0240
Toll Free : 1-800-252-3665
Fax : +1 408-492-0245
E-Mail : wco@ikonet.co.jp

USA Südosten

2150 Boggs Road, Suite 100 Duluth, GA 30096, USA

Tel. : +1 770-418-1904
Toll Free : 1-800-874-6445
Fax : +1 770-418-9403
E-Mail : seo@ikonet.co.jp

USA Sudwesten

8105 N. Beltline Road, Suite 130 Irving, TX 75063, USA

Tel. : +1 972-929-1515 Toll Free : 1-800-295-7886

Fax : +1 972-915-0060 E-Mail : swo@ikonet.co.jp

${\tt IKO\,THOMPSON\,BEARINGS\,CANADA, INC\,.(KANADA)}$

731-2425 Matheson Boulevard East 7th floor Mississauga, Ontario L4W 5K4, Kanada Tel. : +1 905-361-2872

Fax : +1 905-361-6401 E-Mail : itc@ikonet.co.jp

IKO THOMPSON BRAZIL SERVICE CO.,LTD. (BRASILIEN)

Av.Paulista, 854 10th floor, Top Center, 01310-100, Sao Paulo, SP, Brasilien Tel. : +55 (0)11-2186-0221 Fax : +55 (0)11-2186-0299 E-Mail : itb@ikonet.co.jp

Wir wissen, dass die Bewahrung unserer Umwelt zu den wichtigsten Herausforderungen der Weltbevölkerung gehört. Nippon Thompson wird bei seinen Geschäftstätigkeiten im Rahmen der sozialen Verantwortung des Unternehmens Umweltaspekte berücksichtigen, negative Umweltfolgen verhindern und dazu beitragen, eine artenreiche Umwelt zu fördern.

ISO 9001 & 14001 Qualitätssystem Registrierungsbescheinigung

IKO THOMPSON ASIA CO., LTD. (THAILAND)

1-7 Zuellig House, 3rd Floor Silom Road, Silom, Bangrak Bangkok 10500, Thailand Tel. : +66 (0)2-637-5115 Fax : +66 (0)2-637-5116 E-Mail : ita@ikonet.co.ip

See you again at IKO Website http://www.ikont.co.jp/eg/

NIPPON THOMPSON EUROPE B.V. (EUROPE)

Niederlande (Vertriebszentrale) Sheffieldstraat 35-39

3047 AN Rotterdam, Niederlande Tel. : +31 (0)10-462 68 68 Fax : +31 (0)10-462 60 99

Niederlassung Deutschland Mündelheimer Weg 54

40472 Düsseldorf, Deutschland Tel. : +49 (0)211-41 40 61

Fax : +49 (0)211-42 76 93 E-Mail : ntd@ikonet.co.jp

Vertriebsbüro Regensburg Im Gewerbepark D 30 93059 Regensburg, Deutschland

Vertriebsbüro Neunkirchen

Tel. : +49 (0)941-20 60 70 Fax : +49 (0)941-20 60 719 E-Mail : ntdr@iko-nt.de

Gruben Str. 95c 66540 Neunkirchen, Deutschland

Tel. : +49 (0)6821-99 98 60 Fax : +49 (0)6821-99 98 626 E-Mail : ntdn@iko-nt.de

Vertriebsbüro Ost Am Krönerstolln 27 09599 Freiberg, Deutschland

Tel. : +49 (0)3731-69 00 48 Fax : +49 (0)3731-69 00 57 E-Mail : ntds@iko-nt.de

Vertriebsbüro Österreich Ehrenburgstraße 48 9907 Tristach, Österreich

Tel. : +43 (0)4852-64 67 2 Fax : +43 (0)4852-64 58 5 E-Mail : p.walder@ikont.eu

Niederlassung Großbritannien

2 Vincent Avenue, Crownhill

Milton Keynes, Bucks, MK8 0AB, Großbritannien Tel.: +44 (0)1908-566144

ax : +44 (0)1908-565458 -Mail : sales@iko.co.uk

Niederlassung Spanien

Autovia Madrid-Barcelona, Km. 43,700 Polig. Ind. AIDA - Nove A-8, Ofic. 2-1^a 19200 Azuqueca de Henares (Guadalaiara) Spanien

Fel. : +34 949-26 33 90 Fax : +34 949-26 31 13 F-Mail : nts@ikonet.co.jp

Niederlassung Frankreich Roissypole Le Dôme 2 rue de La Haye

BP 15950 Tremblay en France 95733 Roissy C. D. G. Cedex, Frankreich Tel. : +33 (0)1-48 16 57 39 Fax : +33 (0)1-48 16 57 46

IKO THOMPSON KOREA CO.,LTD. (KOREA)

2F, 111, Yeouigongwon-ro, Yeongdeungpo-gu, Seoul, Korea Tel. : +82 (0)2-6337-5851 Fax : +82 (0)2-6337-5852

IKO-THOMPSON (SHANGHAI) LTD. (CHINA)

Shanghai (Vertriebszentrale) 1608-10 MetroPlaza No.555 LouShanGuan Road

ChangNing District Shanghai
Volksrepublik China 200051
Tel. : +86 (0)21-3250-5525
Fax : +86 (0)21-3250-5526
E-Mail : ntc@ikonet.co.jp

Niederlassung Beijing Room1506, Jingtai Tower, NO.24, Jianguomenwai Avenue, Chaoyang District, Beijing Volksrepublik China100022

Tel. : +86 (0)10-6515-7681 Fax : +86 (0)10-6515-7681*106 E-Mail : ntc@ikonet.co.jp Niederlassung Guangzhou

368 Huanshi East Road, Yuexiu District, Guangzhou Guangdong Volksrepublik China 510064 Tel. : +86 (0)20-8384-0797

Room 834, Garden Tower, Garden Hotel

Fax : +86 (0)20-8381-2863 E-Mail : ntc@ikonet.co.jp Niederlassung Wuhan Room 2300, Truroll Plaza No.72 Wusheng Road,

Qiao kou District, Wuhan, Hubei Volksrepublik China 430033 Tel.: +86 (0)27-8556-1610

Tel. : +86 (0)27-8556-1610
Fax : +86 (0)27-8556-1630
E-Mail : ntc@ikonet.co.jp

Büro Shenzhen

Room 420, Oriental Plaza, 1072 Jianshe Road, Luohu District, Shenzhen, Guangdong Volksrepublik China 518001 Tel. :+86 (0)755-2265-0553 Fax :+86 (0)755-2298-0665

E-Mail: ntc@ikonet.co.jp
Büro Ningbo
Room 3406, Zhongnongxin Building, No.181
Zhongshan East Road, Haishu Ward, Ningbo,

Zhejiang Volksrepublik China 315000 Tel. : +86 (0)574-8718-9535

Fax : +86 (0)574-8718-9533 E-Mail : ntc@ikonet.co.jp Büro Qinqdao

No.230
Changjiang Middle Road, Development Zone

Volksrepublik China 266555
Tel. : +86 (0)532-8670-2246
FAX : +86 (0)532-8670-2242
E-Mail : ntc@ikonet.co.jp

Büro Shenyang 2-1203 Tower I.City Plaza Shenyang, No.206

Oinadao

Nanjing North Street Heping District, Shenyang Volksrepublik China 110001

Printed in China © 2016.7 (AKA)

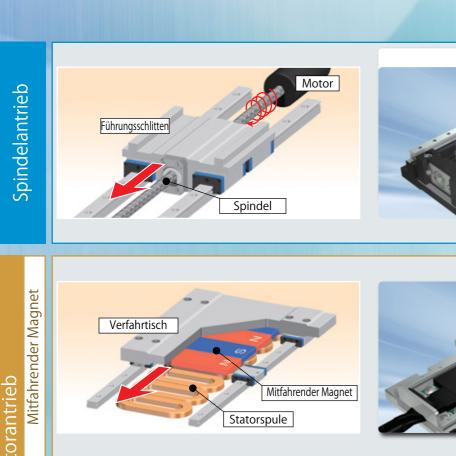
Tel. : +86 (0)24-2334-2662 FAX : +86 (0)24-2334-2442 E-Mail : ntc@ikonet.co.jp

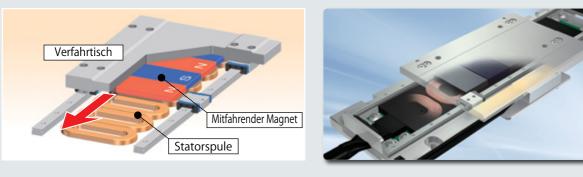
- Die technischen Einzelheiten und Abmessungen der Produkte in diesem Katalog können ohne vorherige Benachrichtigung geändert werden.
- Bei der Produktausfuhr sollte der Exporteuer ein Versandland und die Nutzung angeben und, falls es zu den Kundenanforderungen gehört, die notwendigen Schritte für die Ausfuhrbewilligung einleiten.
- Obwohl bei der Zusammenstellung dieser Daten im Hinblick auf eine umfassende Informationsaufbereitung mit großer Sorgfalt vorgegangen wurde, übernimmt NIPPON THOMPSON CO., LTD. keine Haftung für alle Schäden, indirekte und direkte, die auf Angaben in diesem Katalog zurückzuführen sind. NIPPON THOMPSON CO., LTD. gibt keinerlei Gewährleistung, weder ausdrücklicher noch stillschweigender Natur, einschließlich einer Gewährleistung im Zusammenhang mit der Markttauglichkeit bzw. Eignung für einen bestimmten Gebrauch.
- Unerlaubte Vervielfältigung und Umwandlung sind untersagt.

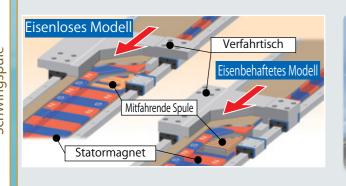
K□ Mechatronik-Baureihe Gesamtkatalog

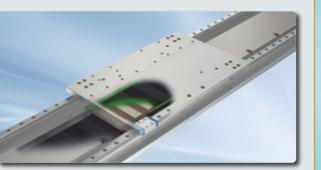
IK Mechatronik-Baureihe

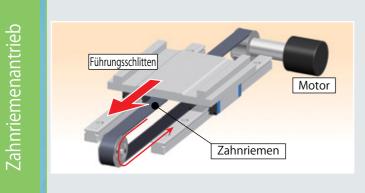
Umweltfreundlich und


qualitativ hochwertig


Modelle und Eigenschaften


der Mechatronik-Baureihe


Modelle der Mechatronik-Baureihe



	Eigenschaften der Mechatronik-Baureihe					
	Bewegungsrichtung	Hublänge	Vorschubkraft	Geschwindigkeit	Beschleunigung	Positionier- genauigkeit
Spindelantrieb	Vertikal Ausrichten	0	(
Linearmotorantrieb Spule Mitfahrender Magnet	Linear Ausrichten					
Linearmo Mitfahrende Spule	Linear			((
Zahnriemenantrieb	Linear		0	Code-Beschrei	O bung ○ Exzellent	

Mechatronik-Baureihe

Produktpalette

Präzisionspositioniertisch TE

- Hauptkomponenten aus hochfester Aluminiumlegierung
- Kompakter Positioniertisch mit geringem Gewicht und flachem Profil

Präzisionspositioniertisch TU

- Hochsteife U-förmige Führungsschiene
- Verschiedene Tischausführungen sind je nach Verwendungszweck verfügbar.

Präzisionspositioniertisch LB Hochgeschwindigkeitsmodell mit Zahnriemenantrieb Parallele Anordnung von zwei Kugelumlaufführungen mit stabiler Leistung.

TSLB

Nano Linear NT

- Kompakte Miniaturausführung
- Sehr flaches Profil des NT38V: nur 11 mm
- Große Auswahl an Varianten für perfekt an Ihren Verwendungszweck angepasste Produkte

NT...H

NT...XZ NT...XZH

Präzisionspositioniertisch L

- In vielen Bereichen bewährtes Standardmodell
- Parallele Anordnung von zwei Kugelumlaufführungen mit stabiler Leistung

TSL...M

Präzisionspositioniertisch LH

- Sorgfältig ausgewählte Komponententeile sichern hohe Genauigkeit und Verlässlichkeit
- Hohe Steifigkeit und hohe Belastung

Ausrichttisch SA

- Querschnittshöhe der 3 Achsen X, Y and θ von nur 52 mm (SA65DE).
- X- und Y-Achse 0,1 μ m, θ -Achse: exzellente Auflösung von bis zu 0,36 sek (SA120DE)

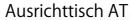
Linearmotortisch LT

- Hohe Geschwindigkeit und Genauigkeit.
- Hohe Beschleunigung / Verzögerung, schnelle Reaktion und reibungsloser Betrieb
- Langzeit wartungsfreie Ausführung mit eingebautem

Ausrichtmodul AM

IT...CF LT...LD LT...H

Super Präzisionspositioniertisch TX


- Erzielt beste Positionierleistung mit Rollenumlaufführung
- Hohe Genauigkeit dank geschlossenem Regelkreis


Reinraum-Präzisionspositioniertisch TC

Optional zur Verwendung in einer hochreinen Umgebungfür Halbleiter- und LCD-Fertigungsmaschinen

- Hochgenaue Positionierung gewährleistet präzise Winkelkorrektur
- Kreuzrollenlager f
 ür hohe Steifigkeit und Kompaktheit.

AM

Mikro-Präzisionspositioniertisch TM

Sehr kleine Größe mit 20 mm Querschnittshöhe und 17 mm Breite dank Antrieb mit geschliffener Spindel.

Präzisionspositioniertisch TS/CT

- Kompakte Stuktur mit flachem Profil
- Kreuzrollenführung garantiert hohe Verlässlichkeit und Genauigkeit

Präzisionshubtisch TZ

- Einzigartiger Keilmechanismus ermöglicht kompaktes und hochgenaues vertikales Positonieren.
- TZ···X erzielt hohe Genauigkeit und Steifigkeit dank der C-Lube Kugelumlaufführung Super MX

TZ...H

TZ...X

1N=0.102kgf=0.2248lbs. 1mm=0.03937inch

IIC Mechatronik-Baureihe

INDEX

Bewegungsrichtun	g und Transportmechanismus	Form	
Linear	Spindelantrieb	TEB TSLM TCEB TXM	
Linear	Zahnriemenantrieb	TSLB	
Linear	Linearmotorantrieb	LT:CE NTV SADE/X	
Ausrichten	Spindelantrieb	AT	
Alignment	Spindelantrieb	AM	
Ausrichten	Linearmotorantrieb	SADE/S	102
Vertical Vertical	Spindelantrieb		

	Baureihe	Modelle der Ausführung mit einer Achse	Modelle der Ausführungen mit mehreren Achsen	Referenzseite
	Präzisionspositioniertisch TE	TEB	_	Seite II -4
ı	Präzisionspositioniertisch TU	TU	_	Seite II -30
ı	Präzisionspositioniertisch L	TSL···M	_	Seite II -96
	Präzisionspositioniertisch LH	TSLHM	CTLHM	Seite II-116
Ī	Super Präzisionspositioniertisch TX	TX···M	CTX···M	Seite II-144
ı	Reinraum-Präzisionspositioniertisch TC	TCEB	-	Seite II-164
ı	Mikro-Präzisionspositioniertisch TM	TM	_	Seite II-180
l	Präzisionspositioniertisch TS/CT	TS	СТ	Seite II-196
	Präzisionspositioniertisch LB	TSLB	-	Seite II -218
	11 77/ 7	341		
	Nano Linear NT	NT···V NT···H	NT···XZ NT···XZH	Seite II-230
	Ausrichttisch SA	SA···DE/X	SA···DE/XY SA···DE/XS SA···DE/XYS	Seite II -260
	Linearmotortisch LT	LT···CE LT···LD LT···H	-	Seite II -276
1	Ausrichttisch AT	AT	_	Seite II -304
1	Ausrichtmodul AM	AM	-	Seite II -316
		1		
	Ausrichttisch SA	SA···DE/S	SA···DE/XS SA···DE/XYS	Seite II -260
	Präzisionshubtisch TZ	TZ TZ···H TZ···X	-	Seite II-330

I -7

Eine Vielzahl an Modellen und Variationen

Präzisionspositioniertisch TE

TE···B

- Kompakter Positioniertisch mit geringem Gewicht und flachem Profil
- Hohe Positioniergenauigkeit
- Langzeit wartungsfreie Ausführung mit eingebautem C-Lube

Hauptkomponenten aus hochfester Aluminumlegierung

Exzellentes Preis-Leistungsverhältnis

Ausführung					
Modell und Größe	Max. Hub (mm)	Max. Geschwindigkeit (mm/s)	Sprindelsteigung (mm)		
TE50B	210	800	4, 8		
TE60B	500	1 000	5, 10		
TF86B	800	1 860	10 20		

Genauigkeit				
Wiederholgenauigkeit	0			
Positioniergenauigkeit	0			
Leerlauf	_			
Parallelität der Tischbewegung A	_			
Parallelität der Tischbewegung B	0			
Genauigkeit der Attitüde	_			
Geradheit	_			
Umkehrspiel	0			

Präzisionspositioniertisch TU

Spindelantrieb

- Originale, hochsteife U-förmige Führungsschiene
- Verschiedene Tischausführungen für Ihre Verwendungszwecke verfügbar
- Führungsschlitten mit hoher Genauigkeit und Steifigkeit in einer Struktur
- Einfacher Bestellvorgang durch Angabe der Produktbezeichnung für Ihre benötigten Funktionen und Leistung

Au	sfü	hrı	ına
, , ,	J. u		۰9

Austuriung				
Modell und Größe	Max. Hub (mm)	Max. Geschwindigkeit (mm/s)	Spindelsteigung (mm)	
TU 25	100	400	4	
TU 30	230	500	5	
TU 40	285	800	4, 8	
TU 50	560	1 000	5, 10	
TU 60	1 010	1 860	5, 10, 20	
TU 86	1 400	1 480	10, 20	
TU 100	1 140	1 110	20	
TU 130	1 260	1 110	25	

Genauigkeit				
Wiederholgenauigkeit	0			
Positioniergenauigkeit	0			
Leerlauf	_			
Parallelität der Tischbewegung A	_			
Parallelität der Tischbewegung B	0			
Genauigkeit der Attitüde	_			
Geradheit	_			
Umkehrspiel				

II –30

TSL···M

Präzisionspositioniertisch L

Spindelantrieb

- In vielen Bereichen bewährtes Standardmodell
- Parallele Anordnung von zwei Kugelumlaufführungen m. stabiler Leistung
- Hohe Laufgenauigkeit and Positioniergenauigkeit
- Viele Größen unterstützen einfache Mehrachsen-Konfigurationen
- Langzeit wartungsfreie Ausführung mit eingebautem C-Lube

ΑI	ISTI	11111	1111
	4510		4110

Modell und Größe	Max. Hub (mm)	Max. Geschwindigkeit (mm/s)	Spindelsteigung (mm)
TSL 90 M	300	500	5, 10
TSL 120 M	600	500	5, 10
TSL 170 M	500	500	5, 10
TSL 170S M	1 000	500	5, 10
TSL 220 M	1 000	500	5, 10

Genauigkeit					
Wiederholgenauigkeit	0				
Positioniergenauigkeit	0				
Leerlauf					
Parallelität der Tischbewegung A					
Parallelität der Tischbewegung B	0				
Genauigkeit der Attitüde	_				
Geradheit					
Umkehrspiel	0				

Siehe Seite

Präzisionspositioniertisch LH

TSLH...M CTLH...M

(Ausführung mit 1 Achse)

(Ausführung mit 2 Achsen)

Spindelantrieb

- Sorgfältig ausgewählte Komponententeile sichern hohe Genauigkeit und Verlässlichkeit.
- Hohe Steifigkeit und hohe Belastung
- Hohe Laufgenauigkeit and Positioniergenauigkeit
- Die Baureihe enthält einen extragroßen Tisch mit 420 mm Breite
- Langzeit wartungsfreie Ausführung mit eingebautem C-Lube

Ausführung				
Modell und Größe	Max. Hub (mm)	Max. Geschwindigkeit (mm/s)	Spindelsteigung (mm)	
TSLH120M	300	500	5, 10	
TSLH220M	400	500	5, 10	
TSLH320M	500	448	5, 10	
TSLH420M	800	448	5, 10	
CTLH120M	300 × 300	500	5, 10	
CTLH220M	400 × 400	500	5, 10	
CTLH320M	500 × 500	448	5, 10	

Genauigkeit	
Wiederholgenauigkeit	0
Positioniergenauigkeit	0
Leerlauf	_
Parallelität der Tischbewegung A	0
Parallelität der Tischbewegung B	_
Genauigkeit der Attitüde	_
Geradheit	0
Umkehrspiel	0

Siehe Seite II –116

1N=0,102 kgf=0,2248 lbs. 1-9 1 mm = 0,03937 Zoll

I - 10

Eine Vielzahl an Modellen und Größenvarianten

Super Präzisionspositioniertisch TX

 $\mathsf{TX} \cdots \mathsf{M}$

(Ausführung mit 1 Achse) Spindelantrieb

(Ausführung mit 2 Achsen)

- Erzielt beste Positionierleistung mit Rollenumlaufführung
- Hohe Genauigkeit dank geschlossenem Regelkreis und hochgenauem Linear Encoder
- Steuermethode je nach Bedarf auswählbar
- Langzeit wartungsfreie Ausführung mit eingebautem C-Lube

Ausführung

3			
Modell und Größe	Max. Hub (mm)	Max. Geschwindigkeit (mm/s)	Spindelsteigung (mm)
TX 120M	300	500	5, 10
TX 220M	400	500	5, 10
TX 320M	500	448	5, 10
TX 420M	800	448	5, 10
CTX 120M	300 × 200	500	5, 10
CTX 220M	400 × 300	500	5, 10

Genauigkeit

Wiederholgenauigkeit	0
Positioniergenauigkeit	0
Leerlauf	0
Parallelität der Tischbewegung A	0
Parallelität der Tischbewegung B	_
Genauigkeit der Attitüde	0
Geradheit	0
Umkehrspiel	0

Siehe Seite | | | -144

Reinraum-Präzisionspositioniertisch TC

TC···EB

- Optional zur Verwendung in einer hochreinen Umgebung für Halbleiter- und LCD-Fertigungsmaschinen
- Kompakter Positioniertisch mit geringem Gewicht und flachem Profil
- Kompatibel mit Reinheitsklasse 3
- Langzeit wartungsfreie Ausführung mit eingebautem C-Lube

Ausführung

1-11

Modell und Größe	Max. Hub (mm)	Max. Geschwindigkeit (mm/s)	Spindelsteigung (mm)
TC50EB	200	400	4, 8
TC60EB	500	500	5, 10
TC86EB	800	1 000	10, 20

Genauigkeit

Wiederholgenauigkeit	0
Positioniergenauigkeit	0
Leerlauf	_
Parallelität der Tischbewegung A	_
Parallelität der Tischbewegung B	0
Genauigkeit der Attitüde	_
Geradheit	_
Umkehrsniel	

Mikro-Präzisionspositioniertisch TM

Spindelsteigung

(mm)

0.5, 1.0, 1.5 0.5, 1.0, 1.5

- Sehr kleine Größe mit 20 mm Querschnittshöhe und 17 mm Breite dank Antrieb mit geschliffener Spindel.
- Hohe Positioniergenauigkeit und exzellente Haltbarkeit
- Je nach Anforderung kann aus zwei Führungsschlittenformen gewählt werden
- Super-Miniatur-Sensor kann eingebaut werden.

Genauigkeit

Max. Geschwindigkeit

(mm/s)

150

150

_	
Wiederholgenauigkeit	0
Positioniergenauigkeit	0
Leerlauf	
Parallelität der Tischbewegung A	
Parallelität der Tischbewegung B	_
Genauigkeit der Attitüde	_
Geradheit	
Umkehrspiel	_

Siehe Seite II –180)

Max. Hub

(mm)

60

50

Präzisionspositioniertisch TS/CT

(Ausführung mit einer Achse)

Spindelantrieb

Kompakte Stuktur mit flachem Profil

Kreurollenführung garantiert hohe Verlässlichkeit und Genauigkeit

Kompaktes Design

Ausführung

Ausführung

Modell und Größe

TM15

TM15G

Modell und Größe	Max. Hub (mm)		Max. Geschwindigkeit	
moden and croise	X-Achse	Y-Achse	(mm/s)	(mm)
TS 55/ 55	±	7.5	30	1
TS 75/ 75	± 1	12.5	30	1
TS 125/125	± 2	25	250	1, 2, 5
TS 125/220	± (± 60		2, 5
TS 220/220	± 6	± 60		2, 5
TS 220/310	± 90		250	2, 5
TS 260/350	±12	25	250	2, 5
CT 55/ 55	± 7.5	± 7.5	30	1
CT 75/ 75	± 12.5	± 12.5	30	1
CT 125/125	± 25	± 25	250	1, 2, 5
CT 220/220	± 60	± 60	250	2, 5
CT 260/350	± 75	±125	250	2, 5
CT 350/350	+125	+125	250	2.5

Wiederholgenauigkeit	0
Positioniergenauigkeit	0
Leerlauf	_
Parallelität der Tischbewegung A	0
Parallelität der Tischbewegung B	0
Genauigkeit der Attitüde	_
Geradheit	_
Umkehrspiel	0

Siehe Seite

1N=0,102 kgf=0,2248 lbs. I -12 1 mm = 0,03937 Zoll

Eine Vielzahl and Modellen und Größenvarianten

Präzisionspositioniertisch LB

Zahnriemenantrieb

TSLB

Linear

- Hochgeschwindigkeitsbetrieb von bis zu 1 500 mm/s dank Zahnriemenantrieb
- Parallele Anordnung von zwei Kugelumlaufführungen mit stabiler Leistung.
- Langer Hub von bis zu 1 200 mm


Ausführung

Modell und Größe	Max. Hub (mm)	Max. Geschwindigkeit (mm/s)	Auflösung (mm)	
TSLB 90	600	1 500	0,1	
TSLB 120	1 000	1 500	0,1	
TSLB 170	1 200	1 500	0,1	

Genauigikeit			
Wiederholgenauigkeit	\triangle		
Positioniergenauigkeit	_		
Leerlauf	_		
Parallelität der Tischbewegung A	_		
Parallelität der Tischbewegung B	\triangle		
Genauigkeit der Attitüde	_		
Geradheit	_		
Umkehrspiel	_		

Siehe Seite

Nano Linear NT

Standardmodell

Linearmotorantrieb

- Kompakte Miniaturausführung
- Sehr flaches Profil des NT38V: nur 11mm
- Große Auswahl für perfekt an Ihren Verwendungszweck angepasste Produkte
- Hoch reaktive Positionierung dank hoher Beschleunigung / Verzögerung
- Zwei-Achsen-Kombination von X und Y

Hochgenaues Modell

Linearmotorantrieb

- Kompakte Miniaturausführung
- Hohe Genauigkeit der Attitüde
- Stabilität bei hoher Geschwindigkeit
- Einfache Systemkonfiguration

Pick and Place-Einheit

NT...XZ NT...XZH

Linearmotorantrieb

- Kompakte Miniaturausführung
- Positionierung mit hohem Takt
- Ultradünn und platzsparend
- Betriebsüberwachungsfunktion

Austuriung				
Modell und Größe	Max. Hub (mm)	Max. Geschwindigkeit (mm/s)	Auflösung (µm)	
NT38V	18	500	0,1; 0,5	
NT55V	65	1 300	0,1; 0,5	
NT80V	120	1 300	0,1; 0,5	
NT88H	65	400	0,01; 0,05	
NT80XZ	45	1 300	0,1; 0,5	
NT90XZH	25	1 300	0,1; 0,5	

Genauigkeit

dendulgkeit				
Artikel	NTV	NTH	NTXZ	
Wiederholgenauigkeit	0	0	0	
Positioniergenauigkeit	_	0	_	
Leerlauf	_	_	_	
Parallelität der Tischbewegung A	_	0	_	
Parallelität der Tischbewegung B	_	_	_	
Genauigkeit der Attitüde	_	0	_	
Geradheit	_	0	_	
Umkehrspiel	_	_	_	

Siehe Seite

II –230

Eine Vielzahl and Modellen und Größenvarianten

Ausrichttisch SA

SA...DE


- Dünnes und kompaktes Design mit Querschnittshöhe der 3 Achsen X, Y und θ von nur 52 mm (SA65DE)
- X- and Y-Achse: 0,1 μ m, θ -Achse: exzellente Auflösung von bis zu 0,36 sek (SA120DE)
- lacktriangle Freie und unabhängige Kombination von X, Y und heta

3			
Modell und Größe	Max. Hub Max. Bedienwinkel	Max. Geschwindigkeit	Auflösung
SA 65 DE/X	10 (mm)	500 (mm/s)	0,1;0,5 (μm)
SA 120 DE/X	20 (mm)	800 (mm/s)	0,1;0,5 (μm)
SA 65 DE/S	50 (Grad)	720 (Grad/s)	0,64 (s)
SA 120 DE/S	60 (Grad)	420 (Grad/s)	0,36 (s)
SA 200 DE/S	280 (Grad)	270 (Grad/s)	0,25 (s)

Genauigkeit	
Wiederholgenauigkeit	0
Positioniergenauigkeit	_
Leerlauf	_
Parallelität der Tischbewegung A	_
Parallelität der Tischbewegung B	_
Genauigkeit der Attitüde	_
Geradheit	_
Umkehrspiel	_

II **–**260

Linearmotortisch LT

LT...CE

Linearmotorantrieb

- Kompakt
- Hohe statische Stabilität
- Hohe Geschwindigkeitstabilität
- Hohe Beschleunigung / Verzögerung, schnelle Reaktion
- Langzeit wartungsfreie Ausführung mit eingebautem C-Lube

Linearmotorantrieb

- Super langer Hub
- Hohe statische Stabilität
- Hohe Geschwindigkeitstabilität
- Hohe und Geschwindigkeit und hohe Auflösung
- Langzeit wartungsfreie Ausführung mit eingebautem C-Lube

Linearmotorantrieb

- Hohe Vorschubkraft
- Hohe Beschleunigung / Verzögerung, schnelle Reaktion und reibungsloser Betrieb
- Hohe statische Stabilität
- Luftkühlung wird utnerstützt
- Langzeit wartungsfreie Ausführung mit eingebautem C-Lube

Genauigkeit				
Artikel	LTCE	LTLD	LTH	
Wiederholgenauigkeit	0	0	0	
Positioniergenauigkeit	_	_	_	
Leerlauf	_	_		
Parallelität der Tischbewegung A	_	_	_	
Parallelität der Tischbewegung B	_	_	_	
Genauigkeit der Attitüde	_	_	_	
Geradheit	_	_	_	
Umkehrspiel	_	_	_	

Siehe Seite II –276

1				
	Modell und Größe	Max. Hub (mm)	Max. Geschwindigkeit (mm/s)	Auflösung (µm)
	LT100CE	1 000	2 000	0,1; 0,5; 1,0
	LT150CE	1 200	2 000	0,1; 0,5; 1,0
	LT130LD	2 760	3 000	0,1; 0,5; 1,0
	LT170LD	2 720	3 000	0,1; 0,5; 1,0
	LT170H	2 670	1 500	0,1; 0,5; 1,0

1N=0,102 kgf=0,2248 lbs. 1 mm = 0,03937 Zoll

I -15

9

Eine Vielzahl and Modellen und Größenvarianten

Ausrichttisch AT

AT

Spindelantrieb

44 Ausrichten

- Hochgenaue Positionierung gewährleistet präzise Winkelkorrektur
- Kreuzrollenlager für hohe Steifigkeit und Kompaktheit.
- Hohe Wiederholgenauigkeit
- Eine Baureihe mit 3 Größen

۸ (۰۰	
Ausfül	nriina
rusiu	mung
	_

	Modell und Größe	Max. Verfahrwinkel (Ausrichten)	Spindelsteigung (mm)	Rotatorauflösung (μ m)	
	AT120	± 5	1	1	
	AT200	± 5	1	1	
ĺ	AT300	±10	2	2	

Genauigkei

Wiederholgenauigkeit	0
Positioniergenauigkeit	_
Leerlauf	_
Parallelität der Tischbewegung A	_
Parallelität der Tischbewegung B	_
Genauigkeit der Attitüde	_
Geradheit	_
Umkehrspiel	_

Siehe Seite

Spindelantrieb

4 Ausrichte

- Ermöglicht freie Gestaltung des Tisches gemäß Ihres Bedarfs
- Toleranz der Regelung der Höhe innerhalb von $\pm 10 \,\mu$ m
- Ideal f
 ür große Ger
 ätschaften
- Hohe Genauigkeit, hohe Steifigkeit und hohe Verlässlichkeit

Ausführung

7 tablain and				
Modell und Größe	Max. Hub (mm)	Länge Führungsschiene (mm)	Spindelsteigung (mm)	
AM25	30	130	4	
AM40	30	180	4	
AM60	90	290	5	
AM86	120	390	5	
	Modell und Größe AM25 AM40 AM60	Modell und Größe Max. Hub (mm) AM25 30 AM40 30 AM60 90	Modell und Größe Max. Hub (mm) Länge Führungsschiene (mm) AM25 30 130 AM40 30 180 AM60 90 290	

Genauigkeit

_	
Wiederholgenauigkeit	0
Positioniergenauigkeit	0
Leerlauf	_
Parallelität der Tischbewegung A	_
Parallelität der Tischbewegung B	0
Genauigkeit der Attitüde	_
Geradheit	_
Umkehrspiel	0

Siehe Seite

Präzisionshubtisch TZ

TZ

Spindelantrieb

Linear

- Einzigartiger Keilmechanismus ermöglicht kompaktes und hochgenaues vertikales Positionieren.
- TZ···X erzielt hohe Genauigkeit und Steifigkeit dank der C-Lube Kugelumlaufführung Super MX
- Linear Encoder montierbar
- Langzeit wartungsfreie Ausführung mit eingebautem C-Lube
- Eine Baureihe mit zwei Verkleinerungsfaktoren

Ausführung

Modell und Größe	Max. Hub (mm)	Max. Geschwindigkeit (mm/s)	Spindelsteigung (mm)
TZ120	10	100	4
TZ120X	10	100	4
TZ200H	24	125	5
TZ200X	24	125	5

Genauigkeit

Wiederholgenauigkeit	0
Positioniergenauigkeit	0
Leerlauf	0
Parallelität der Tischbewegung A	
Parallelität der Tischbewegung B	_
Genauigkeit der Attitüde	0
Geradheit	
Umkehrspiel	

Siehe Seite

1N=0,102 kgf=0,2248 lbs. 1 mm = 0,03937 Zoll

Für innovative Tische mit geringem Gewicht und flachem Profil

Präzisionspositioniertisch TE

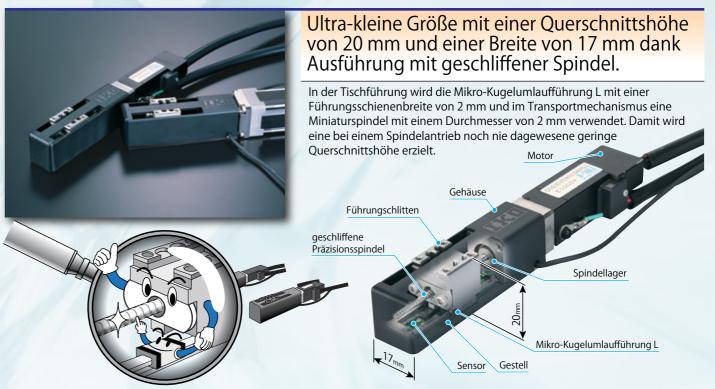
TE...B

Hauptkomponenten aus hochfester Aluminiumlegierung.
Geringes Gewicht und kompakter Struktur mit einem in einem U-förmigen Gestell angebrachten Führungsschlitten!

50

TE50B

Verwendung von Führungsschlitten


und Gestell aus hochfester

Aluminiumlegierung!

Für die ultimative Verkleinerung

Mikro-Präzisionspositioniertisch TM

TM

Nano Linear NT

NT...V

Mit dem Ziel der ultimativen Verkleinerung hat der NT38V10, die kleinste Einheit der Baureihe, eine Querschnittshöhe von nur 11 mm, eine Tischbreite von 38 mm und eine Gesamtlänge von 62 mm.

Der verwendete Raum wird auch bei geschichteter Verwendung der Tische in X und Y-Richtung nicht erhöht, wodurch eine weitere Verkleinerung des Positioniermechanismus gefördert wird.

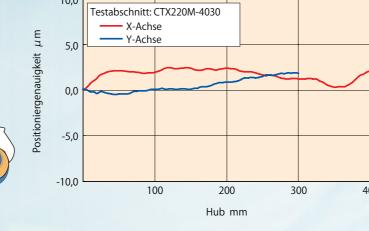
Modell				NTV			
	NT38V10	NT38V18	NT55V25	NT55V65	NT80V25	NT80V65	NT80V120
Modell und Größe	The state of the s	N. C.					
Querschnitt	38	26	41	555	16	80	

1N=0,102 kgf=0,2248 lbs 1 mm = 0.03937 Zoll

50

TU50

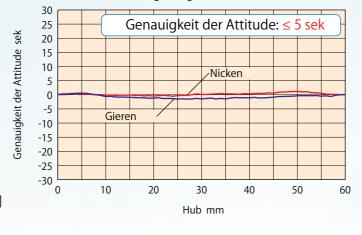
Für eine höhere Genauigkeit


Super Präzisionspositioniertisch TX

TX···M, CTX···M

Garantierte sehr hohe Positioniergenauigkeit und Auflösung mit eingebautem hochpräzisem Linear Encoder!

Die Verwendung der C-Lube-Rollenumlaufführung Super MX garantiert die ultimative Laufleistung. Ein geschlossener Regelkreis wird durch den hochpräzisen Linear Encoder ermöglicht, um so eine hohe Positioniergenauigkeit entlang der gesamten Hublänge zu erzielen.


Nano Linear N7

NT...H

Hohe Genauigkeit der Attitude!

Durch die Kombination von hochgenau verarbeiteten Teilen und einer Kreuzrollenführung mit Käfigzwangsführung wird eine Genauigkeit der Attitude von ≤ 5 sek erzielt. Attitudenabweichungen aufgrund der Bewegung wird minimiert, wodurch eine hohe Wiederholgenauigkeit erzielt wird.

Zum Erzielen von hochgenauer Positionierung und hoher Geschwindigkeit

Linearmotortisch LT

LT...LD

Direktantrieb ermöglicht sowohl hohe Präzision als auch hohe Geschwindigkeit.

Unterstützt den für eine lange Hubbewegung erforderlichen Hochgeschwindigkeitsbetrieb. Hochgeschwindigkeitsbewegeung von bis 3 000 mm/s möglich.

Für eine hohe Geschwindigkeitsstabilität

Linearmotortisch LT

LT···CE, LT···LD, LT···H

Hohe Geschwindigkeitsstabilität dank Direktantrieb und fortschrittlicher Servo-Technologie.

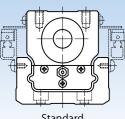
12
11,5
10 mm/s Geschwindigkeitsstabilität (gemessene Frequenz: 1 000Hz): ±1,78%
11
10,5
10
9,5
9
8,5
8
0 1 2 3 4 5
Zeit s

* Wert unter Verwendung eines ADVA-Treibers.

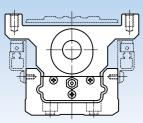
1 mm = 0.03937 Zoll

Für eine große Auswahl an Optionen

Einfache Bestellung durch die Angabe der entsprechenden Produktbezeichnung für die gewünschten Funktionen und Leistung!


Präzisionspositioniertisch TU

TU



Form des Führungsschlitten

Zwei Führungsschlittenformen sind verfügbar.

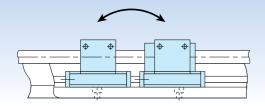
Standard Kurz, Standard, Lang

Flanschmodell Kurz, Standard, Lang

Präzisionspositioniertisch TE

TE...B

Ausführung mit Motorumlenkung


Die verkürzte Gesamtlänge des Tisches trägt zur Platzeinsparung bei.

Mit Abdeckblech

Um das Eindringen von Fremdstoffen in den Tisch zu verhindern, ist eine mit Abdeckblech verfügbar.

Anzahl der Führungsschlitten

Auf der Führungsschiene können je nach angewendeter Last und Moment zwei Führungsschlitten montiert werden.

Modell und Steigung der Spindel

Je nach erforderlicher Genauigkeit kann zwischen einer gerollten und einer geschliffenen Spindel gewählt werden. Die Spindelsteigung kann ebenfalls ausgewählt werden.

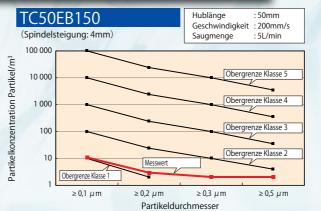
Tisch mit Faltenbälgen

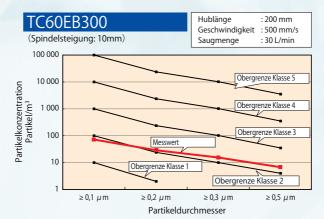
Um das Eindringen von Fremdstoffen in den Tisch zu verhindern, ist eine Ausführung mit Faltenbälgen verfügbar.

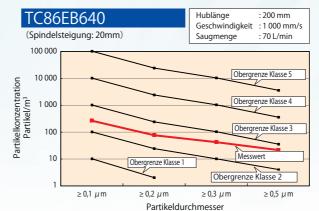
Schwarzchromatierung der Oberflächen

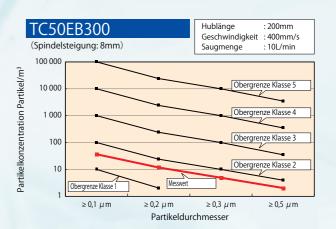
Zur Verbesserung der Korrosionsbeständigkeit wird eine Chrombeschichtung auf die Oberflächen von Führungstisch und Spinde aufgebracht.

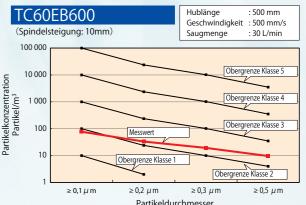
Für Reinraumanwendungen

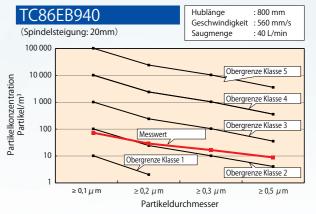

Reinraum-Präzisionspositioniertisch TC


TC...EB




Reinraumklasse 3 wird erreicht!


Edelstahlband mit hervorragender Korrosionsbeständigkeit und Seitenabdeckung an Antriebs- und Führungsteilen des Führungsschlittens. Das Edelstahlband wird mithilfe der Kunststoffrolle im Innern des Führungsschlittens gegen die Seitenabdeckung gedrückt. Das integrierte Magnetband verhindert in Kombination mit der Abdichtung das Ansammeln von Partikeln im Gehäuse. Die Partikel können über ein Absaugsystem automatisch entfernt werden.



1N=0.102 kaf=0,2248 lbs 1 mm = 0,03937 Zoll

Für Wartungsfreiheit

Originale und weltweit erste Struktur mit (C-Lube)

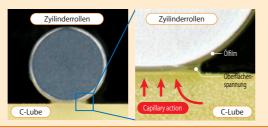
Schmieröl wird durch die Bewegung der Walzkörper aufgebracht

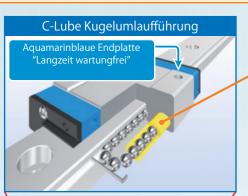
C-Lube integriert

Das Schmieröl wird direkt auf die Oberfläche der Wälzkörper aufgebracht

Das Schmieröl wird direkt auf die Wälzkörper aufgebracht, nicht auf die Führungsschiene.

Wenn die Wälzkörper das poröse Schmierelement berühren, das in die Umlaufbahn der Führungswagen integriert ist, wird Schmieröl auf die Oberfläche der Walzkörper aufgebracht und durch den Umlauf der Walzkörper zum Lastbereich transportiert.


Dadurch wird langfristig eine ausreichende Schmierung der Belastungsfläche garantiert.



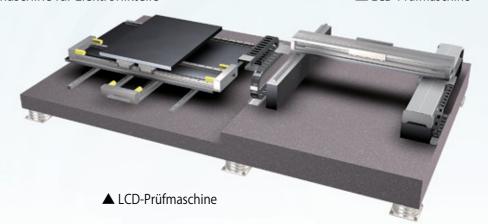
Die Oberfläche des porösen Schmierelements ist immer mit Schmieröl überzogen

überzogen. Durch die Oberflächenspannung im Kontaktbereich zwischen porösem Schmierelement und Wälzkörpern wird ständig Schmieröl auf die Oberfläche der Walzkörper aufgebracht.

Neues Schmieröl wird permanent von anderen Bereichen an die Oberfläche des porösen Schmierelements nachgeliefert, mit der die Walzkörper Kontakt haben.

- Präzisionspositioniertisch TE
- Präzisionspositioniertisch L
- Präzisionspositioniertisch LH
- Reinraum-Präzisionspositioniertisch TC
- Präzisionshubtisch TZ

- - Super Präzisionspositioniertisch TX
- Nano Linear NT
- Ausrichttisch SA
- Linearmotortisch LT
- Baureihen mit eingebautem (C-Lube)


Für ein breites Anwendungsspektrum

Umfassende Erfahrung auf dem Gebiet der Spezialtische hilft uns dabei, Lösungen präzise auf Ihre besonderen Anforderungen, wie etwa Tische mit verschiedenen Achskonfigurationen, abzustimmen. Falls erforderlich, bitte Like

▲ Prüfmaschine für Elektronikteile

▲ LCD-Prüfmaschine

I -25

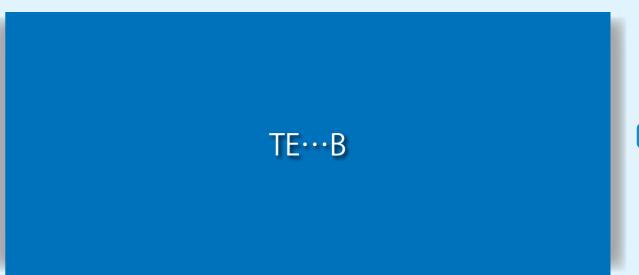
Erklärung and Maßtabellen für die j	jeweiligen Produktre	eihen	
Präzisionspositioniertisch TE	Erklärung ••• - 5	Maßtabellen	••• - 17
Präzisionspositioniertisch TU	Erklärung ••• - 31	Maßtabellen	••• - 63
 Präzisionspositioniertisch L 	Erklärung ••• - 97	Maßtabellen	··· -110
 Präzisionspositioniertisch LH 	Erklärung ••• -117	Maßtabellen	··· -131
 Super Präzisionspositioniertisch TX 	Erklärung ••• -145	Maßtabellen	··· -157
 Reinraum-Präzisionspositionier 	tisch TC Erklärung ••• -165	Maßtabellen	••• -176
 Mikro-Präzisionspositioniertisch 	n TM		
	Erklärung • • • -181	Maßtabellen	••• -193
● Präzisionspositioniertisch TS/CT	Γ Erklärung · · · · -197	Maßtabellen	··· -208
 Präzisionspositioniertisch LB 	Erklärung ••• -219	Maßtabellen	••• -226
Nano Linear NT	Erklärung ••• -231	Maßtabellen	••• -254
Ausrichttisch SA	Erklärung ••• -261	Maßtabellen	••• -270
Linearmotortisch LT	Erklärung ••• -277	Maßtabellen	••• -294
Ausrichttisch AT	Erklärung ••• -305	Maßtabellen	••• -312

■ Treiberausführungen für Tische mit Linearmotorantrieb

Erklärung • • • || -344

Erklärung • • • | | -317 Maßtabellen • • • | | -325

Erklärung • • • || -331 Maßtabellen • • • || -338


● Programmierbare Controller Erklärung · · · || -354

General Erklärung

Ausrichtmodul AM

Präzisionshubtisch TZ

Anwendungsbeispiele

II-3

C-Lube

Motorhalterung Führungsschlitten Spindel Sensornut Tischbett Kugelumlaufführung Endabdeckung

Wichtige Produktbeschreibungen

IKI Präzisionspositioniertisch TE

Antriebsmethode	Präzisionsspindel
Linear-Wölzkörperführung	Kugelumlaufführung
Eingebaute Schmierplatte	Eingebaute "C-Lube"-Schmierplatte
Tisch- und Gestellmaterial	Hochfeste Aluminiumlegierung
Sensor	Nach Produktbezeichnung auswählen

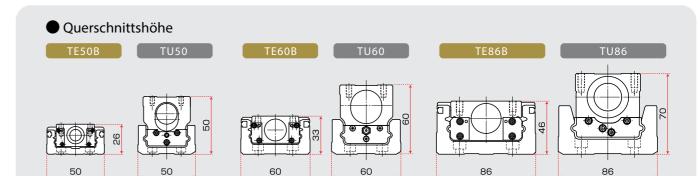
Genauigkeit

	Einheit: mm
Wiederholgenauigkeit	±0,002~0,020
Positioniergenauigkeit	0,035~0,065
Leerlauf	-
Parallelität der Tischbewegung A	-
Parallelität der Tischbewegung B	0,008~0,016
Verwindungsgenauigkeit	-
Geradheit	-
Umkehrspiel	0,005

Vorteile

Flacher und hochgenauer Präzisionspositioniertisch mit geringem Gewicht

Flacher, hochgenauer Präzisionspositioniertisch mit geringem Gewicht, dessen Hauptkompononenten aus einer hochfesten Aluminiumlegierung gefertigt sind und dessen Führungsschlitten in einer U-förmigen Führungsschiene angeordnet ist. Die Gesamtmasse des Tisches wird auf ca. 40 % der Baureihe TU reduziert. Geringe Querschnittshöhe (26 mm für TE50B, 33 mm für TE60B und 46 mm für TE86B). Zudem trägt die Struktur verschiedener direkt auf der Sensornut anbringbarer Sensoren direkt zur Verkleinerung bei.


Tischausführung ist nach Ihrem Bedarf auswählbar

Der Führungsschlitten ist in zwei Formen erhältlich: Standard- und Flanschmodell. Die Anzahl der Führungsschlitten, Motorumlenkung, Spindel, mit oder ohne Staubschutzabdeckung sowie die Installation verschiedener Sensoren kann ausgewählt werden, wodurch Sie ein optimal an die Anforderungen Ihrer Maschine oder Gerätschaft angepasstes Produkt auswählen können.

Hervorragendes Preis-Leistungs-Verhältnis

Das hervorragende Preis-Leistungs-Verhältnis wird durch eine Reduzierung der Teileanzahl und eine Optimierung der Formen der Teile erzielt.

Vergleich mit Präzisionspositioniertisch TU

Masse

Modell und Größe	Hublänge (mm)	Gesamtlänge (mm)	Masse (kg)	Masse / 100 mm (kg)
TE50B	60	218	0,52	0,24
TU50	60	226	1,8	0,80
TE60B	100	269	1,0	0,37
TU60	100	298	3,3	1,11
TE86B	300	523	3,7	0,71
TU86	250	498	10,9	2,19

Variation

Form	Modell	В	Breite Führungsschiene (mm)			
Folili	Modeli	50	60	86		
Standard	TE···BS	${\Rightarrow}$	☆	☆		
Flanschmodell	TE···BF	☆	☆	☆		

1N=0,102kgf=0,2248lbs.

II-5

Produktbezeichnung i Beispiel einer Produktbezeichnung TE 50 B F 300 / AT001 8 S C 3 Modell Seite II-7 2 Größe Seite II-7 3 Schlittenform Seite II-7 4 Tischlänge Seite II-7 Bezeichnung der Motorflanschs Seite II-7 6 Spindelsteigung Seite II-9 Anzahl Führungsschlitten Seite II-9 8 Ausführung der Abdeckung Seite II-9

Produktbezeichnung und Ausführung -

Seite II-9

Modell	TE···B: Präzisionspositioniertisch TE	
2 Größe	Größe gibt die Tischbreite an.	
	Wählen Sie eine Größe aus der Liste in Tabelle 1.	
3 Schlittenform	S: Standardschlitten	
	F: Standardschlitten Flanschmodell	

4 Tischlänge

9 Auswahl der Sensoren

Wählen Sie eine Tischlänge aus der Liste in Tabelle 1.

Tabelle 1 Größe.	n Einheit: mm	
Modell und Größe	Tischbreite	Tischlänge
TE50B	50	150, 200, 250, 300
TE60B	60	150, 200, 300, 400, 500, 600
TE86B	86	340, 440, 540, 640, 740, 840, 940

Anmerkung: Huhlängen finden Sie in den Maßtahellen ah Seite II-17

Anmerkung: Hublangen finden Sie in den Mals	tabellett ab Seite II-17.						
5 Bezeichnung des Motorflansches	AT000 : Ausführung ohne Motorumlenkung Ohne Motorflansch AT001 bis AT011 : Ausführung ohne Motorumlenkung Mit Motorflansch AR000 : Ausführung mit Motorumlenkung Ohne Motorflansch						
	AR001 bis AR008 : Ausführung mit Motorumlenkung Mit Motorflansch Wählen Sie zur Angabe des Motorflansches eine Bezeichnung aus Tabelle 2.1 und Tabelle 2.2 aus.						
	 Bitte geben Sie die für den zu verwendenden Motor anwendbare Ausführung mit Motorumlenkung sowie Motorflansch an. Sollte die Ausführung ohne Motorumlenkung und mit Motorflansch gewählt werden, wird der Tisch mit einer montierten und in Tabelle 3 angegebenen Kupplung geliefert. Die endgültige Anpassung sollte 						
	jedoch durch den Kunden erfolgen, da sie nur vorübergehend fixiert wird. Bei einem Produkt ohne Motorflansch (AT000) ist keine Kupplung angebracht. • Wenn die Ausführung mit Motorumlenkung und Motorflansch gewählt wird, werden "für den						
	angegebenen Motor entsprechendes Gehäuse, Riemenscheiben (auf Motor- und Spindelseite), Abdeckung, Motorhalterung, Riemen und für die Montage notwendige Schrauben" geliefert. Motorbefestigungsschrauben sollten durch den Kunden bereitgestellt werden.						

Produktbezeichnung und Ausführung

Tabelle 2.1 Anwendung des Motorflanschs (Ausführung ohne Motorumlenkung)

Art Hersteller Baureihe Modell Nennleistung W größe mm TE50B TE60B TE86B YASKAWA ELECTRIC CORPORATION Σ-V SGMJV-A5A 50 AT001 AT002 — SGMJV-01A 100 — AT001 AT002 — SGMJV-01A 100 — — AT002 — SGMJV-02A 200 — — — AT003 SGMAV-02A 200 — — — AT003 HF-MP053, HG-MR053 — — AT001 AT002 — Mitsubishi Electric HF-MP13, HG-MR13 — — AT001 AT002 — HF-KP13, HG-KR13 HF-KP13, HG-KR13 — — AT002 —
YASKAWA ELECTRIC CORPORATION Σ-V SGMJV-01A SGMJV-02A SGMAV-02A Mitsubishi Electric Mitsubishi Electric Corporation J3, J4 F-MP13, HG-MR13 F-MP13, HG-MR13 L-MP13 HG-KR13 SGMAV-A5A 100 AT001 AT002 - AT002 - AT002 AT001 AT002 - AT002 AT001 AT002 - AT003 - AT003 - AT004 - AT004 - AT004 - AT004 - AT004 - AT004 - AT005 - AT006 - AT007 - AT008 -
YASKAWA ELECTRIC CORPORATION Σ-V SGMJV-01A SGMJV-02A SGMAV-02A SGMAV-02
YASKAWA ELECTRIC CORPORATION Σ-V SGMJV-01A SGMJV-02A SGMAV-02A SGMAV-02A FF-MP053, HG-MR053 HF-KP053, HG-KR053 HF-MP13, HG-MR13 HF-MP13, HG-MR13 HF-MP13, HG-MR13 HF-MP13, HG-KR13 HF-KP13, HG-KR13 HF-KP13, HG-KR13 HF-KP13, HG-KR13 HF-KP13, HG-KR13 HF-KP13, HG-KR13 HF-MP13, HG-KR13
CORPORATION SGMAV-01A
SGMAV-02A 200
SGMAV-02A
HF-KP053, HG-KR053 HF-MP13, HG-MR13
HF-KP053, HG-KR053
Mitsubishi Electric
Corporation
AC-
HF-MP23, HG-MR23 200 □60 − − AT003
HF-KP23, HG-KR23 200 — — AT003
MSMD5A 50 AT004 AT005 —
MSME5A 30 AT004 AT005 —
Panasonic MINAS A5 MSMD01 100 - AT005 -
Corporation MSME01 - AT005 -
MSMD02 200 □60 AT006
MSME02 200 — — AT006
Hitachi Industrial ADMA-R5L 50 AT001 AT002 —
Equipment Systems AD ADMA-01L 100 - AT002 -
Co., Ltd ADMA-02L 200 □60 − − AT003
AR46 □42 AT007 — —
AR66 □60 − − AT008
a Schritt AR69 □60 − − AT008
Schrittmotor ORIENTAL MOTOR AS46
Co., Ltd. AS66 □60 − AT010 AT011
AS69 □60 − AT010 AT011
RK RK54 • CRK54 □42 AT009 − −
CRK RK56 • CRK56 (¹) □60 − AT010 AT011

Hinweis (1) Gilt für den Außendurchmesser Ø8 der Motorwelle.

Hinweis: Detaillierte Motorspezifikationen finden Sie in dem jeweiligen Katalog des Herstellers. Den Motorflansch für NEMA finden Sie ab Seite III-31ff.

Tabelle 2.2 Anwendung des Motorflanschs (Ausführung mit Motorumlenkung)

	Z	u verwenden	der Motor		Flansch-		Motorflansch	
Art	Hersteller	Baureihe	Modell	Nennleistung W	größe mm	TE50B	TE60B	TE86B
			SGMJV-A5A	50		AR001	AR002	_
			SGMAV-A5A	- 50	□40	AR001	AR002	_
	YASKAWA ELECTRIC	Σ-V	SGMJV-01A	100	1 ⊔40	_	AR002	_
	CORPORATION	Z-V	SGMAV-01A	100		_	AR002	_
		SGMJV-02A 200 □60	□60	_	_	AR003		
			SGMAV-02A	200		_	_	AR003
			HF-MP053, HG-MR053	50		AR001	AR002	_
	Mitsubishi Electric Corporation	J3, J4	HF-KP053, HG-KR053] 50	□40	AR001	AR002	_
AC- Servomotor			HF-MP13, HG-MR13	100	□40	_	AR002	_
			HF-KP13, HG-KR13	100		_	AR002	_
			HF-MP23, HG-MR23	200	□60	_	_	AR003
			HF-KP23, HG-KR23			_	_	AR003
	Panasonic Corporation	MINAS A5	MSMD5A	50		AR004	AR005	ı
			MSME5A		□38	AR004	AR005	_
			MSMD01	100	□36	_	AR005	_
			MSME01	100		_	AR005	_
			MSMD02	200	□60	_	_	AR006
			MSME02	200		_	_	AR006
	Hitachi Industrial		ADMA-R5L	50	□40	AR001	AR002	_
	Equipment Systems	AD	ADMA-01L	100	□40	_	AR002	_
	Co., Ltd		ADMA-02L	200	□60	_	_	AR003
		α Schritt	AR46		□42	AR007	_	_
Cohrittmotor	ORIENTAL MOTOR	a scillit	AS46		□42	AR008	_	-
Schrittmotor	Co., Ltd.	RK CRK	RK54 • CRK54		□42	AR008	_	_

Einheit: mm

Tabelle 3 Kupplungsmodelle (Ausführung ohne Motorumlenkung)

Motor- flansch	Kupplungsmodelle	Hersteller	Trägheitsmoment der Kupplung J _c ×10 ^{.5} kg • m²
AT001	XGS-19C- 5× 8	Nabeya Bi-tech Kaisha	0,062
AT002	XGS-19C- 5× 8	Nabeya Bi-tech Kaisha	0,062
AT003	XGS-30C- 8×14	Nabeya Bi-tech Kaisha	0,55
AT004	XGS-19C- 5× 8	Nabeya Bi-tech Kaisha	0,062
AT005	XGS-19C- 5× 8	Nabeya Bi-tech Kaisha	0,062
AT006	XGS-30C- 8×11	Nabeya Bi-tech Kaisha	0,55
AT007	XGS-19C- 5× 6	Nabeya Bi-tech Kaisha	0,062
AT008	XGS-30C- 8×10	Nabeya Bi-tech Kaisha	0,55
AT009	XGS-19C- 5× 5	Nabeya Bi-tech Kaisha	0,062
AT010	XGS-19C- 5× 8	Nabeya Bi-tech Kaisha	0,062
AT011	XGS-30C- 8× 8	Nabeya Bi-tech Kaisha	0,55

Anmerkung: Detaillierte Angaben zu den Kupplungen finden Sie im Katalog des Herstellers.

6 Spindelsteigung	4: Steigung 4 mm (gilt für TE50B) 5: Steigung 5 mm (gilt für TE60B) 8: Steigung 8 mm (gilt für TE50B) 10: Steigung 10 mm (gilt für TE60B und TE86B) 20: Steigung 20 mm (gilt für TE86B)	
Anzahl Führungsschlitten	S: Ein Führungsschlitten	
	C: Zwei Führungsschlitten	
8 Ausführung der Abdeckung	0: Ohne Abdeckung	
3	C: Mit Abdeckblech (gilt für TE···BF)	
9 Auswahl der Sensoren	0: Ohne Sensor	

2: Zwei Sensoreinheiten montiert (Limit) 3: Drei Sensoreinheiten montiert (Limit, Vor-Referenzsensor) (Limit, Vor-Referenzsensor, Referenzsensor) 4: Vier Sensoreinheiten montiert 5: Zwei angebrachte Sensoren (Limit) 6: Drei angebrachte Sensoren (Limit, Vor-Referenzsensor) 7: Drei angebrachte Sensoren (Limit, Vor-Referenz- und Referenzsensor) Wenn die Sensorbefestigung (Symbol 2, 3 oder 4) ausgewählt wurde, wird der Sensor in der Sensornut auf der Seite des Tisches und zwei Kontaktplatten an den Führungsschlitten angebracht. Sollte eine Sensorbefestigung (Symbol 5, 6 oder 7) ausgewählt werden, wird die angegebene Menge an Sensoren einschließlich der Befestigungsschrauben für Sensoren, Muttern, zwei Kontaktplatten und Befestigungsschrauben für die Kontaktplatten angebracht.

Ausführungen.

Tabelle 4 Genauigkeit

Modell und Größe	Tischlänge	Wiederhol- genauigkeit	Positioniergenauigkeit (1)	Parallelität der Tischbewegung B	Umkehrspiel (¹)
	150		0,035		
TE50B	200	±0,002	0,033	0,008	0,005
TESOD	250	(±0,020)	0,040	0,000	0,003
	300		0,010		
	150		0,035		
	200		0,033	0,008	0,005
TE60B	300	±0,002 (±0,020)	0,040	0,000	
	400		0,045		
	500		0,043	0,010	
	600		0,050	0,010	
	340		0,040	0,008	
	440		0,045	0,010	
	540		0,050	0,010	
TE86B	640	±0,002 (±0,020)	0,030	0,012	0,005
	740	(= 1/626)	0,055	0,012	
	840		0,065	0,014	
	940		0,003	0,016	

Hinweis (¹) Dies gilt nicht für die Ausführung mit Motorumlenkung.

Anmerkung: Die Werte in () sind Referenzwerte bei Ausführung mit Motorumlenkung, sofern die Riemenspannung korrekt eingestellt wurde.

Table 5 Maximale Geschwindigkeit

		Tischlänge	Maximale Geschwindigkeit mm/s						
Motormodell	Modell und Größe	mm	Steigung 4 mm	Steigung 5 mm	Steigung 8 mm	Steigung 10 mm	Steigung 20 mm		
	TE50B	_	400	_	800	_	_		
	TE60B	≤ 500	_	500	_	1 000	_		
	IEOUD	600	_	350	_	710	_		
AC-	TE86B	≤ 540	_	_	_	930	1 860		
Servomotor		640	_	_	-	830	1 630		
		740	_	_	_	590	1 170		
		840	_	_	_	440	880		
		940	_	_	_	340	690		
	TE50B	-	120	_	240	_	_		
Schrittmotor	TE60B	-	_	150	_	300	_		
SCHILLIHOLOF	TE86B	≤ 840	_	_	_	300	600		
		940	-	-		300	600		

Anmerkung: Um die durchführbare, maximale Geschwindigkeit zu ermitteln, müssen die Betriebsbedingungen des zu verwendeten Motors und die Lastbedingungen berücksichtigt werden.

Tabelle 6 Mögliches Moment

Modell und Größe	Mög	gliches Moment N	• m		
Modeli una Große	T _o	T _x	T _Y		
TE50B		9,8			
TE60B		16,7			
TE86B	49,0				

1N=0,102kgf=0,2248lbs. 1mm=0,03937 Zoll

11-9

Table 7 Maximale Belastung

Modell und Größe	Spindelsteigung	Maximale Belastung kg		
Modell und Große	mm	Horizontal	Vertikal	
TE50B	4	12	11	
IEJUB	8	12	7	
TE60B	5	17	13	
TEOOB	10	17	8	
TE86B	10	36	18	
	20	29	10	

Anmerkung: Dieser Wert gilt für einen Standardschlitten Flanschmodell.

Tabelle 8 Nennlast der Wälzkörper-Linearführung

Ī	Modell	Dynamische Grundnennlast C	sches Nennmoment (1) N	l·m		
	und Größe	N	N	T _o	T _x	T _Y
	TE50B	8 490	12 500	211 (422)	99,5 (508)	99,5 (508)
	TE60B	12 400	17 100	354 (708)	151 (795)	151 (795)
	TE86B	26 800	35 900	1 110 (2 220)	472 (2 400)	472 (2 400)

Hinweis (¹) Bei den in den folgenden Abbildungen angegebenen Richtungen, gilt der Wert in () für zwei dicht beieinander stehende Führungsschlitten.

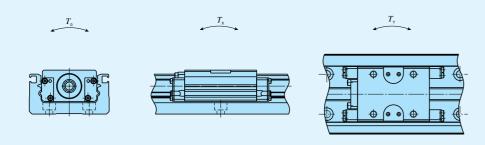
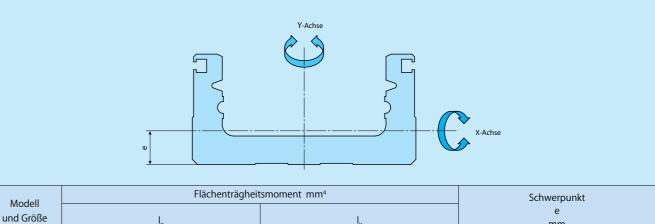


Tabelle 9.1 Ausführungen der Spindel

Modell und Größe	Steigung mm	Schaftdurchmesser mm	Dynamische Grundnennlast C N	Statische Grundnennlast C _o N
TE50B	4	0	2 290	3 575
TEJOB	8	o [1 450	2 155
TE60B	5	10	2 730	4 410
TEOOB	10	10	1 720	2 745
TEO6D	10	12	3 820	6 480
TE86B	20	12	2 300	3 920


Tabelle 9.2 Ausführungen der Spindel

Einheit: mm

Modell und Größe	Tischlänge	Schaftdurchmesser	Gesamtlänge
	150		192,5
TE50B	200	8	242,5
TESOB	250	0	292,5
	300		342,5
	150		194
	200		244
TE60B	300	10	344
TEOUB	400	10	444
	500		544
	600		644
	340		395
	440		495
	540		595
TE86B	640	12	695
	740		795
	840		895
	940		995

Ausführungen

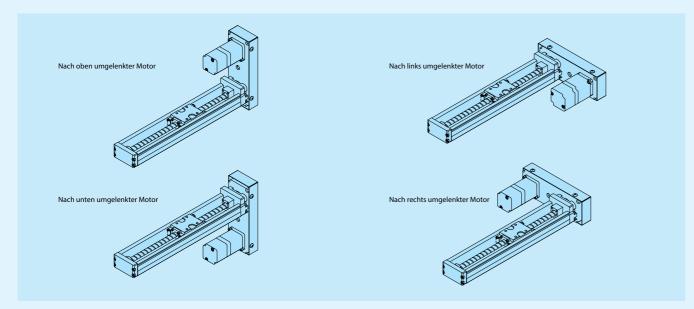
Table 10 Flächenträgheitsmoment des Führungsschienenquerschnittes

Modell	Flachentragneit	Schwerpunkt		
			e	
und Große	I _x	l _y	mm	
TE50B	1.3×10 ⁴	1.2×10 ⁵	6,4	
TE60B	4.7×10 ⁴	3.2×10⁵	8,8	
TE86B	2.0×10 ⁵	1.3×10 ⁶	13,0	
	TE60B	Modell und Größe I _x TE50B 1.3×10 ⁴ TE60B 4.7×10 ⁴	und Größe I_{χ} I_{ψ} TE50B 1.3×10^4 1.2×10^5 TE60B 4.7×10^4 3.2×10^5	

Tabelle 11 Trägheits- und Anlaufmoment des Tisches

Tabelle I I	liugiicits				Träah	oitemomont	dos Tischos	1 (2)				
		Trägheitsmoment des Tisches J _⊤ (²) ×10 ⁻⁵ kg • m²										
Modell und Größe	Tisch- länge mm	länge Standardschlitte			en	Standardschlitten						Anlauf- moment $T_s(1)$
				Steigung					Steigung			N·m
		4 mm	5 mm	8 mm	10 mm	20 mm	4 mm	5 mm	8 mm	10 mm	20 mm	
	150	0,057	_	0,071	_	_	0,060	_	0,084	_	_	
TE50B	200	0,069	_	0,083	_	_	0,072	_	0,096	_	-	0.02
TEOUB	250	0,085	_	0,099	_	_	0,088	_	0,112	_	_	0,03
	300	0,097	_	0,111	_	_	0,100	_	0,124	_	_	
	150	_	0,13	_	0,17	_	_	0,14	_	0,20	_	
	200	_	0,19	_	0,23	_	_	0,20	_	0,26	_	1
TE60B	300	_	0,26	_	0,30	_	_	0,27	_	0,33	_	0,03
TEOOD	400	_	0,33	_	0,36	_	_	0,34	_	0,40	-	0,03
	500	_	0,40	_	0,44	_	_	0,41	_	0,47	-	
	600	_	0,47	_	0,51	_	_	0,48	_	0,54	I	
	340	-	ı	_	0,73	1,19	_	_	_	0,81	1,50	
	440	_	_	_	0,88	1,35	_	_	_	0,95	1,64	
	540	_		_	1,03	1,50	_	_	_	1,11	1,80	
TE86B	640	_	-	_	1,18	1,64	_	_	_	1,25	1,95	0,05
	740	-	I	_	1,33	1,79	_	_	_	1,41	2,10	
	840	_	_	_	1,48	1,94	_	_	_	1,56	2,25	
	940	_	_	_	1,63	2,10	_	_	_	1,71	2,40	

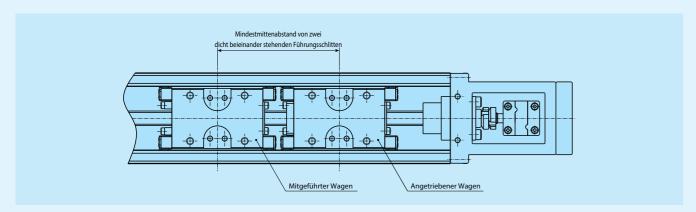
Hinweise (1) Bei Verwendung von zwei Schlitten werden die Werte mit ca. 1,5 multipliziert. Im Fall der Ausführung mit Motorumlenkung werden die Werte mit ca. 2,0 multipliziert.


(2) Für die Ausführung mit Motorumlenkung fügen Sie bitte den folgenden Wert zu dem Wert in der Tabelle hinzu. TE50B: 0,17×10-5kg • m², TE60B: 0,39×10-5kg • m², TE86B: 0,86×10-5kg • m²

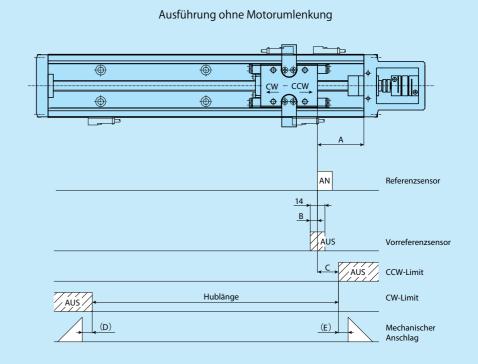
Ausführung mit Motorumlenkung -

Die Ausführung mit Motorumlenkung ist für den Präzisionspositioniertisch TE verfügbar. Durch die Umlenkung des Motors kann Platz gespart werden und die Gesamtlänge des Tisches reduziert werden. Für die Abmessungen der Ausführung mit Motorumlenkung siehe die jeweilige Maßtabelle.

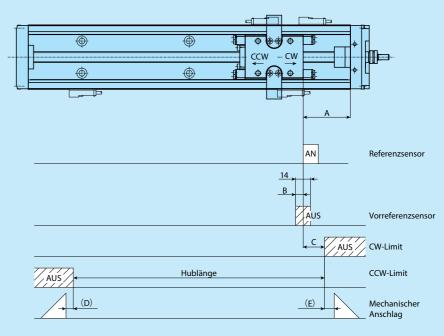
Bei der Ausführung mit Motorumlenkung sollte die Montage durch den Kunden erfolgen, da "für den angegebenen Motor entsprechendes Gehäuse, Riemenscheiben (auf Motor- und Spindelseite), Abdeckung, Motorhalterung, Riemen und für die Montage notwendige Schrauben" mitgeliefert werden. Jedoch sollten die Motorbefestigungsschrauben durch den Kunden bereitgestellt werden. Die Motorumlenkung kann in vier Richtungen, wie in folgender Abbildung angegeben, montiert werden.


Es gibt einen Maßunterschied, bei dem der Motorflansch oder der Motor je nach Richtung der Motorumlenkung tiefer liegt als die Unterseite des Tisches. Entwerfen Sie das Design so, dass die peripheren Komponenten nicht stören und dass genug Spiel gemäß den Richtwerten in den Maßtabellen auf den Seiten II-23 bis II-28 vorhanden ist.

Ausführung mit zwei Führungsschlitten


Die Ausführung mit zwei Führungsschlitten ist für den Präzisionspositioniertisch TE verfügbar. Spindelmuttern werden auf dem motorseitigen, vom Motor angetriebenen Führungsschlitten montiert. Der auf der vom Motor gegenüberliegenden Seite liegende Führungsschlitten besitzt keine Spindelmutter und wird als Mitläufer genutzt.

Es ist möglich, durch den Einsatz von zwei Führungsschlitten die Steifigkeit des Tisches gegenüber Momentbelastungen zu erhöhen (siehe Tabelle 8, Seite II - 44). Bei der Kombination von zwei Führungsschlitten sollte mehr Platz als beim "Mindestabstand von zwei Führungsschlitten in engem Kontakt", der in den Maßtabellen auf den Seiten II -17 bis II -28 angegeben wird, verwendet werden. (Eine Vergrößerung des Abstandes verkürzt den Hub.)



Ausführung mit Sensoren

Table 12 Sensor-Zeittafel

Ausführung mit Motorumlenkung

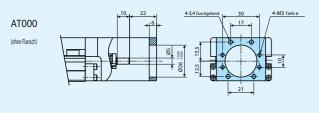
						Einheit: mm
Modell und Größe	Spindel- steigung	А	В	С	D(¹)	E
TE50B	4	33	2	- 10	6 (9)	5
TLJOD	8		6			J
TE60B	5	44	3	20	9,5 (8,5)	٥
TEOUD	10	44	7	20	9,3 (0,3)	9
TE86B	10	EO	7	20	11 (11)	10
	20	50	12	20	11 (11)	10

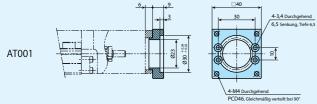
Hinweise (1) In (1) angegebene Werte gelten bei Verwendung von zwei Führungsschlitten.

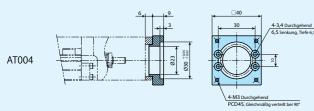
Anmerkungen

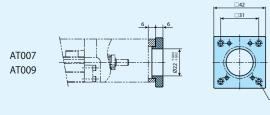
1. Die Montage eines Sensors wird unter Verwendung der entsprechenden Produktbezeichnung angegeben.

- 2. Die Ausführungen der jeweiligen Sensoren finden Sie im Abschnitt Sensorausführung unter Allgemeine Erläuterung.
- 3. Bei der Ausführung mit Motorumlenkung sind CW und CCW umgekehrt.

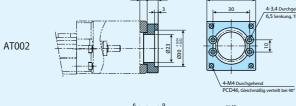

1N=0,102kgf=0,2248lbs. 1mm=0,03937 Zoll

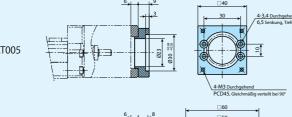

Abmessungen des Motorflanschs

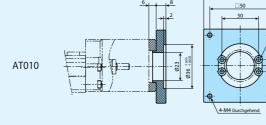

■ Ausführung ohne Motorumlenkung

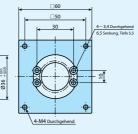

Anmerkung: Den Motorflansch für NEMA finden Sie ab Seite III-31ff.

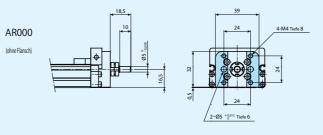
TE50B

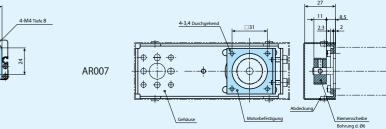


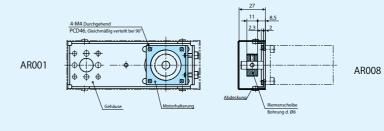


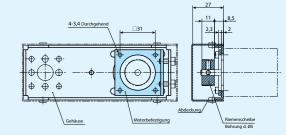


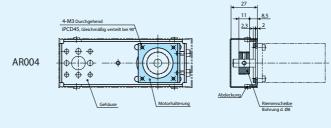

TE60B

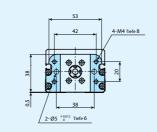


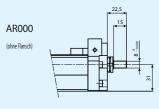


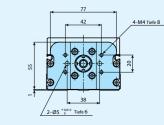


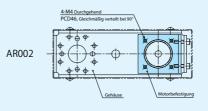

■ Ausführung mit Motorumlenkung

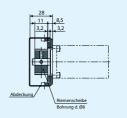

TE50B

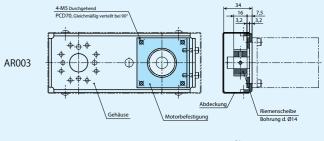


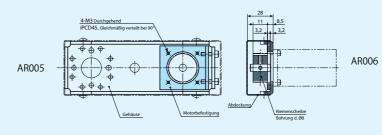


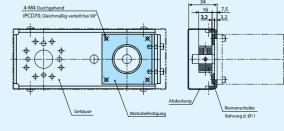

TE60B

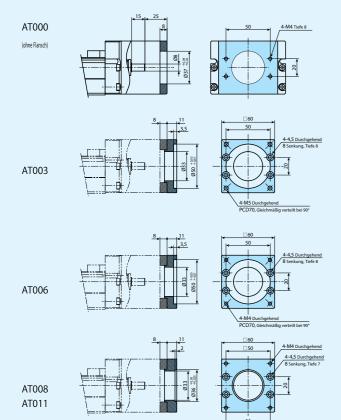

AR000






TE86B





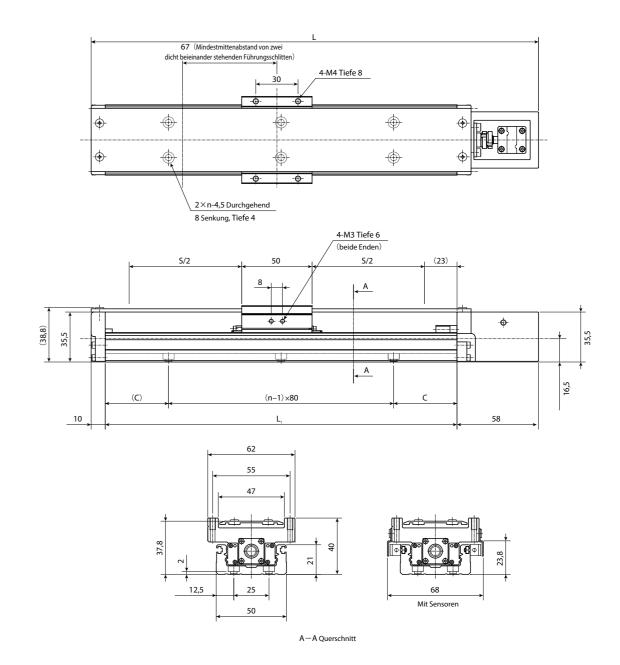
TE86B

TE50BS (Ausführung ohne Motorumlenkung)

Einheit: mm

Tischlänge	Gesamtlänge	Hublänge	Gewindebohrungen des Tisches		Masse (Ref.)
L,	L	S (2)	C n		kg (³)
150	218	60(-)	35	2	0,52
200	268	110 (40)	20	3	0,62
250	318	160 (90)	45	3	0,72
300	368	210 (140)	30	4	0,82

Hinweise (1) Wenn die Befestigungsschraube zu stark angezogen wird, kann die Laufleistung des Führungsschlittens beeinträchtigt werden, weshalb nie eine Schraube eingeführt werden sollte, die länger als die Durchgangsbohrung ist.


(2) Der Wert gibt die maximale Hublänge bei montierten Endsensoren an. Der Wert in () gibt die Abmessungen für zwei dicht beieinander stehende Führungsschlitten an.

(3) Der Wert gibt die Masse des gesamten Tisches mit einem Führungsschlitten an und ist mit zwei Führungsschlitten 0,07 kg schwerer. 1. Die Motorbefestigung für den AC-Servomotor ist 3,5 mm niedriger als die Unterseite des Tisches.

Anmerkungen

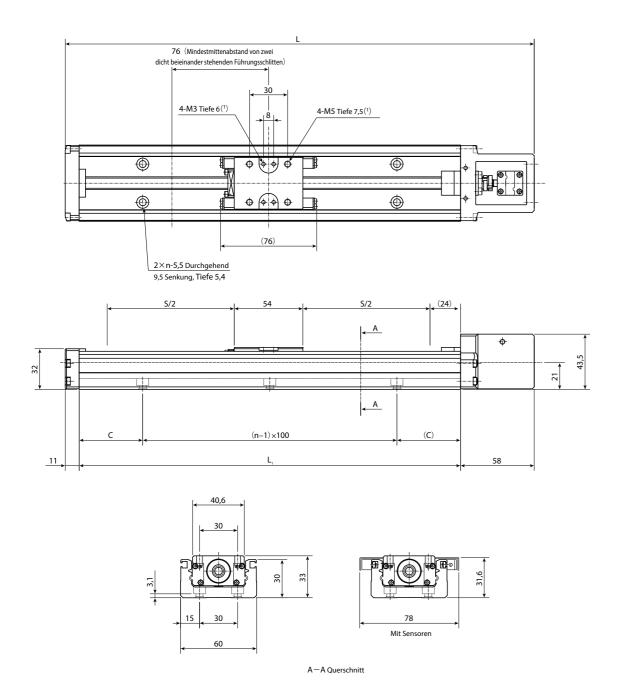
2. Die Motorbefestigung für den Schrittmotor ist 4,5 mm niedriger als die Unterseite des Tisches.

TE50BF (Ausführung ohne Motorumlenkung)

Einheit: mm

Tischlänge	Gesamtlänge	Hublänge	Gewindebohrung	en des Tisches	Masse (Ref.)
L,	L	S (1)	С	n	kg (²)
150	218	60(-)	35	2	0,65
200	268	110 (40)	20	3	0,75
250	318	160 (90)	45	3	0,85
300	368	210 (140)	30	4	0,94

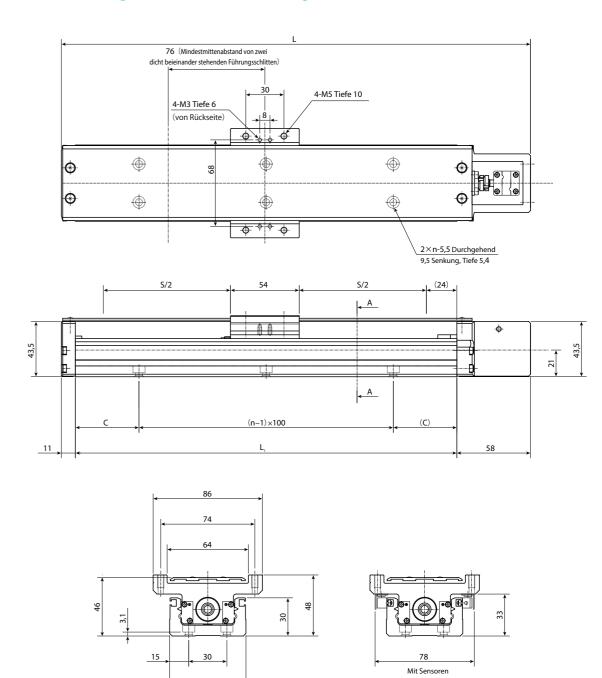
Hinweise (1) Der Wert gibt die maximale Hublänge bei montierten Endsensoren an. Der Wert in (1) gibt die Abmessungen für zwei dicht beieinander stehende Führungsschlitten an.


(2) Der Wert gibt die Masse des gesamten Tisches mit einem Führungsschlitten an und ist mit zwei Führungsschlitten 0,16 kg schwerer.

Anmerkungen

1. Der Motorflansch für den AC-Servomotor ist 3,5 mm niedriger als die Unterseite des Tisches.

2. Der Motorflansch für den AC-Servomotor ist 4,5 mm niedriger als die Unterseite des Tisches.


TE60BS (Ausführung ohne Motorumlenkung)

					Einheit: mm
Tischlänge	Gesamtlänge	Hublänge	Gewindebohrung	en des Tisches	Masse (Ref.)
L,	L	S (2)	С	n	kg (³)
150	219	50(-)	25	2	0,9
200	269	100(-)	50	2	1,0
300	369	200 (125)	50	3	1,3
400	469	300 (225)	50	4	1,6
500	569	400 (325)	50	5	1,9
600	669	500 (425)	50	6	2,2

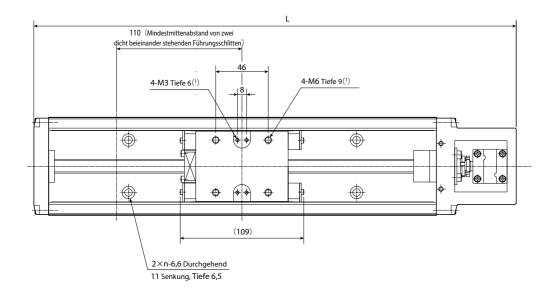
Hinweise (1) Wenn die Befestigungsschraube zu stark angezogen wird, kann die Laufleistung des Führungsschlittens beeinträchtigt werden, weshalb nie eine Schraube eingeführt werden sollte, die länger als die Tiefe der Gewindebohrung ist.

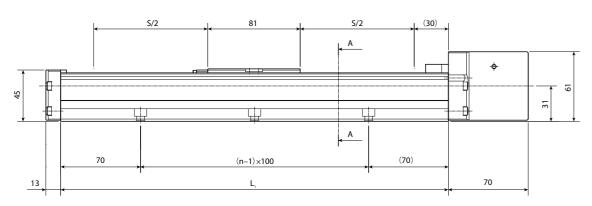
TE60BF (Ausführung ohne Motorumlenkung)

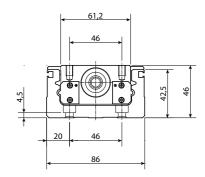
A-A Querschnitt

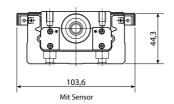
Einheit: mm

					Elillicia illili
Tischlänge	Gesamtlänge	Hublänge	Gewindebohrung	en des Tisches	Masse (Ref.)
L,	L	S (1)	С	n	kg (²)
150	219	50(-)	25	2	1,1
200	269	100(-)	50	2	1,2
300	369	200 (125)	50	3	1,5
400	469	300 (225)	50	4	1,9
500	569	400 (325)	50	5	2,2
600	669	500 (425)	50	6	2,5


Hinweise (1) Der Wert gibt die maximale Hublänge bei montierten Endsensoren an. Der Wert in (1) gibt die Abmessungen für zwei dicht beieinander stehende Führungsschlitten an.

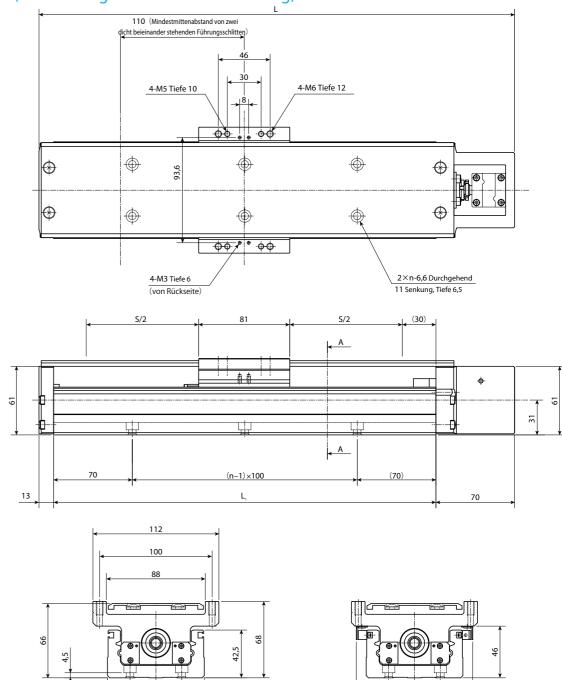

⁽²⁾ Der Wert gibt die maximale Hublänge bei montierten Endsensoren an. Der Wert in () gibt die Abmessungen für zwei dicht beieinander stehende Führungsschlitten an.


⁽³⁾ Der Wert gibt die Masse des gesamten Tisches mit einem Führungsschlitten an und ist mit zwei Führungsschlitten 0,1 kg schwerer. Anmerkung: Der Motorflansch für den AC-Servomotor ist 9 mm niedriger als die Unterseite des Tisches.


⁽²⁾ Der Wert gibt die Masse des gesamten Tisches mit einem Führungsschlitten an und ist mit zwei Führungsschlitten 0,2 kg schwerer Anmerkung: Der Motorflansch für den AC-Servomotor ist 9 mm niedriger als die Unterseite des Tisches.

TE86BS (Ausführung ohne Motorumlenkung)

A-A Querschnitt

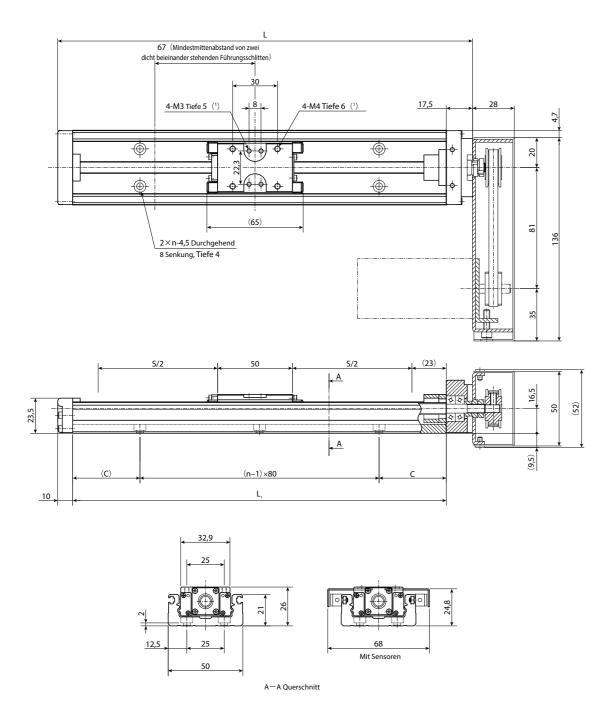

Einheit: mm

Tischlänge	Gesamtlänge	Hublänge	Gewindebohrungen des Tisches	Masse (Ref.)
L,	L	S(2)	n	kg (³)
340	423	200 (90)	3	3,1
440	523	300 (190)	4	3,7
540	623	400 (290)	5	4,2
640	723	500 (390)	6	4,7
740	823	600 (490)	7	5,2
840	923	700 (590)	8	5,7
940	1 023	800 (690)	9	6,3

Hinweise (1) Wenn die Befestigungsschraube zu stark angezogen wird, kann die Laufleistung des Führungsschlittens beeinträchtigt werden, weshalb nie eine Schraube eingeführt werden sollte, die länger als die Tiefe der Gewindebohrung ist.

- (2) Der Wert gibt die maximale Hublänge bei montierten Endsensoren an. Der Wert in () gibt die Abmessungen für zwei dicht beieinander
- (3) Der Wert gibt die Masse des gesamten Tisches mit einem Führungsschlitten an und ist mit zwei Führungsschlitten 0,3 kg schwerer

TE86BF (Ausführung ohne Motorumlenkung)



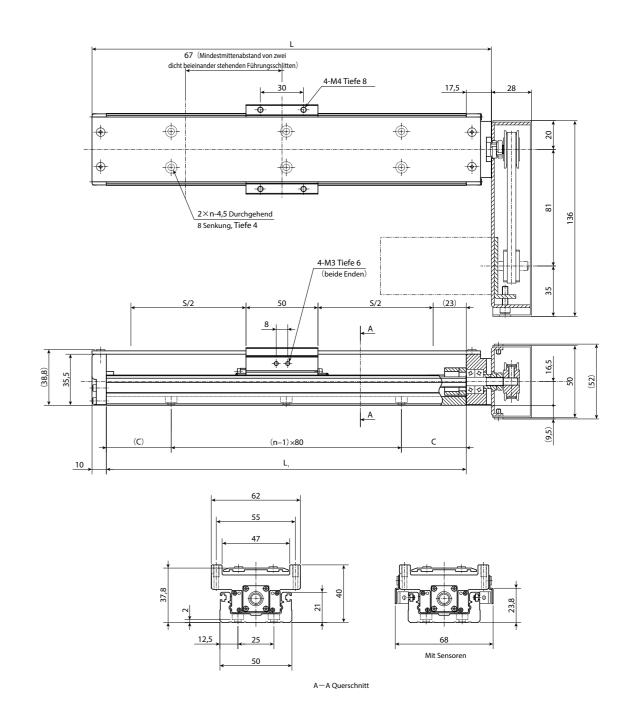
	1	A—A Quersch	Einheit: mm	
Tischlänge	Gesamtlänge	Hublänge	Gewindebohrungen des Tisches	Masse (Ref.)
L,	L	S (1)	n	kg (²)
340	423	200 (90)	3	3,7
440	523	300 (190)	4	4,3
540	623	400 (290)	5	4,9
640	723	500 (390)	6	5,5
740	823	600 (490)	7	6,1
840	923	700 (590)	8	6,7
940	1 023	800 (690)	9	7.2

Hinweise (1) Der Wert gibt die maximale Hublänge bei montierten Endsensoren an. Der Wert in (1) gibt die Abmessungen für zwei dicht beieinander stehende Führungsschlitten an.

(2) Der Wert gibt die Masse des gesamten Tisches mit einem Führungsschlitten an und ist mit zwei Führungsschlitten 0,6 kg schwerer

TE50BS (Ausführung mit Motorumlenkung)

Einheit: mm


					Little Cit. IIIIII
Tischlänge	Gesamtlänge	Hublänge	Gewindebohrung	en des Tisches	Masse (Ref.)
L,	L	S (2)	С	n	kg (3)
150	177,5	60(-)	35	2	0,72
200	227,5	110 (40)	20	3	0,82
250	277,5	160 (90)	45	3	0,92
300	327,5	210 (140)	30	4	1,02

- Hinweise (1) Wenn die Befestigungsschraube zu stark angezogen wird, kann die Laufleistung des Führungsschlittens beeinträchtigt werden, weshalb nie eine Schraube eingeführt werden sollte, die länger als die Durchgangsbohrung ist.
 - (2) Der Wert gibt die maximale Hublänge bei montierten Endsensoren an. Der Wert in () gibt die Abmessungen für zwei dicht beieinander stehende Führungsschlitten an.
 - (3) Der Wert gibt die Masse des gesamten Tisches mit einem Führungsschlitten an und ist mit zwei Führungsschlitten um 0,07 kg schwerer.

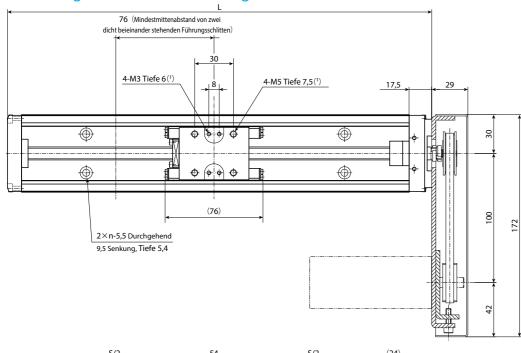
Anmerkungen

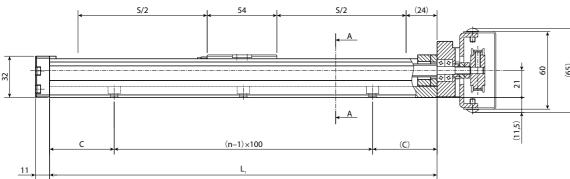
- 1. Teile für die Motorbefestigung sind beigefügt und diese Abbildung zeigt den fertigen Zustand, nachdem der Motorflansch durch den Kunden montiert wurde.
- 2. Sollte der Motor nach rechts oder links umgelenkt werden, ist der Motorflansch ca. 9,5 mm tiefer als die Unterseite des Tisches. Außerdem ist es ca. 2,5 bis 3,5 mm tiefer als die Unterseite des Tisches sollte der AC-Servomotor durch den Kunden montiert werden und ist ca. 4,5 mm tiefer wenn der Schrittmotor angebracht wird.
- 3. Sollte der Motor nach oben umgelenkt werden, ist der Motorflansch ca. 3,5 mm tiefer als die Unterseite des Tisches.

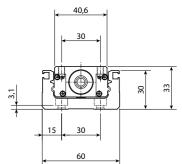
TE50BF (Ausführung mit Motorumlenkung)

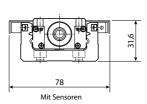
Einheit: mm

Tischlänge	Gesamtlänge	Hublänge	Gewindebohrung	en des Tisches	Masse (Ref.)
L,	L	S (1)	С	n	kg (²)
150	177,5	60(-)	35	2	0,85
200	227,5	110 (40)	20	3	0,95
250	277,5	160 (90)	45	3	1,05
300	327,5	210 (140)	30	4	1,15


Hinweise (1) Der Wert gibt die maximale Hublänge bei montierten Endsensoren an. Der Wert in (1) gibt die Abmessungen für zwei dicht beieinander stehende Führungsschlitten an.


(2) Der Wert gibt die Masse des gesamten Tisches mit einem Führungsschlitten an und ist mit zwei Führungsschlitten um 0,16 kg schwerer.


Anmerkungen


- Teile für die Motorbefestigung sind beigefügt und diese Abbildung zeigt den fertigen Zustand, nachdem der Motorflansch durch den Kunden montiert wurde.
- 2. Sollte der Motor nach rechts oder links umgelenkt werden, ist der Motorflansch ca. 9,5 mm tiefer als die Unterseite des Tisches. Außerdem ist er ca. 2,5 bis 3,5 mm tiefer als die Unterseite des Tisches sollte der AC-Servomotor durch den Kunden montiert werden und ist ca. 4,5 mm tiefer wenn der Schrittmotor angebracht wird.
- 3. Sollte der Motor nach oben umgelenkt werden, ist der Motorflansch ca. 3,5 mm tiefer als die Unterseite des Tisches.

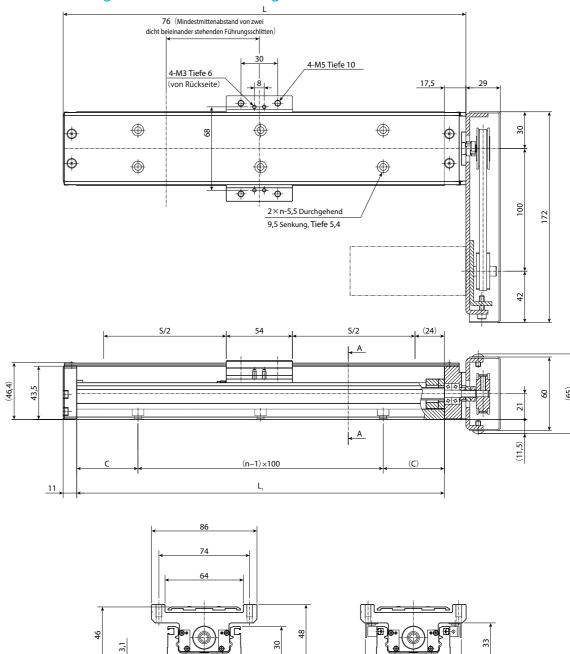
TE60BS (Ausführung mit Motorumlenkung)

A—A Querschnitt

Einheit: mm

Tischlänge	Gesamtlänge	Hublänge	Gewindebohrung	en des Tisches	Masse (Ref.)
L,	L	S(2)	С	n	kg (³)
150	178,5	50(-)	25	2	1,2
200	228,5	100(-)	50	2	1,3
300	328,5	200 (125)	50	3	1,6
400	428,5	300 (225)	50	4	1,9
500	528,5	400 (325)	50	5	2,2
600	628,5	500 (425)	50	6	2,5

Hinweise (1) Wenn die Befestigungsschraube zu stark angezogen wird, kann die Laufleistung des Führungsschlittens beeinträchtigt werden, weshalb nie eine Schraube eingeführt werden sollte, die länger als die Tiefe der Gewindebohrung ist.


(2) Der Wert gibt die maximale Hublänge bei montierten Endsensoren an. Der Wert in () gibt die Abmessungen für zwei dicht beieinander stehende Führungsschlitten an.

(3) Der Wert gibt die Masse des gesamten Tisches mit einem Führungsschlitten an und ist mit zwei Führungsschlitten um 0,1 kg schwerer.

Anmerkungen 1. Teile für die Motorbefestigung sind beigefügt und diese Abbildung zeigt den fertigen Zustand, nachdem der Motorflansch durch den

- 2. Sollte der Motor nach rechts oder links umgelenkt werden, ist der Motorflansch ca. 11,5 mm tiefer als die Unterseite des Tisches.
- 3. Sollte der Motor nach oben umgelenkt werden, ist der Motorflansch ca. 9 mm tiefer als die Unterseite des Tisches.

TE60BF (Ausführung mit Motorumlenkung)

A—A Querschnitt

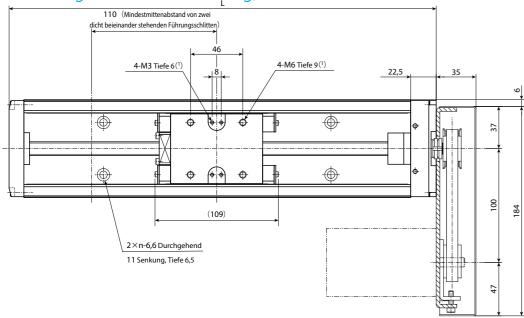
Mit Sensorer

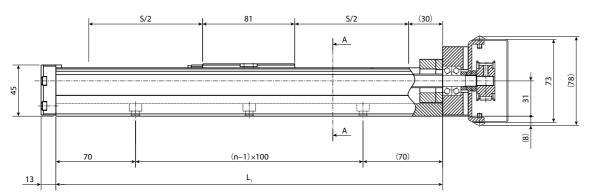
Einheit: mm

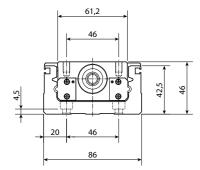
II-26

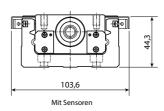
Tischlänge	Gesamtlänge	Hublänge	Gewindebohrung	en des Tisches	Masse (Ref.)
L,	L	S (1)	С	n	kg (²)
150	178,5	50(-)	25	2	1,4
200	228,5	100(-)	50	2	1,5
300	328,5	200 (125)	50	3	1,8
400	428,5	300 (225)	50	4	2,2
500	528,5	400 (325)	50	5	2,5
600	628,5	500 (425)	50	6	2,8

Hinweise (1) Der Wert gibt die maximale Hublänge bei montierten Endsensoren an. Der Wert in (1) gibt die Abmessungen für zwei dicht beieinander stehende Führungsschlitten an.


(2) Der Wert gibt die Masse des gesamten Tisches mit einem Führungsschlitten an und ist mit zwei Führungsschlitten um 0,2 kg schwerer. Anmerkungen 1. Teile für die Motorbefestigung sind beigefügt und diese Abbildung zeigt den fertigen Zustand, nachdem der Motorflansch du


 Teile für die Motorbefestigung sind beigefügt und diese Abbildung zeigt den fertigen Zustand, nachdem der Motorflansch durch den Kunden montiert wurde.


2. Sollte der Motor nach rechts oder links umgelenkt werden, ist der Motorflansch ca. 11,5 mm tiefer als die Unterseite des Tisches. 3. Sollte der Motor nach oben umgelenkt werden, ist der Motorflansch ca. 9 mm tiefer als die Unterseite des Tisches.


1N=0,102kgf=0,2248lbs.

TE86BS (Ausführung mit Motorumlenkung)

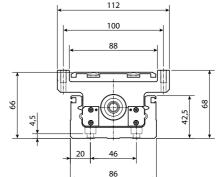
A-A Querschnitt

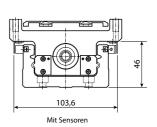
Einheit: mm

Tischlänge	Gesamtlänge	Hublänge	Gewindebohrungen des Tisches	Masse (Ref.)
L,	L	S (2)	n	kg (³)
340	375,5	200 (90)	3	4,0
440	475,5	300 (190)	4	4,6
540	575,5	400 (290)	5	5,1
640	675,5	500 (390)	6	5,6
740	775,5	600 (490)	7	6,1
840	875,5	700 (590)	8	6,6
940	975.5	800 (690)	a	72

Hinweise (1) Wenn die Befestigungsschraube zu stark angezogen wird, kann die Laufleistung des Führungsschlittens beeinträchtigt werden, weshalb nie eine Schraube eingeführt werden sollte, die länger als die Tiefe der Gewindebohrung ist.


(2) Der Wert gibt die maximale Hublänge bei montierten Endsensoren an. Der Wert in () gibt die Abmessungen für zwei dicht beieinander stehende Führungsschlitten an.


(3) Der Wert gibt die Masse des gesamten Tisches mit einem Führungsschlitten an und ist mit zwei Führungsschlitten um 0,3 kg schwerer.


Anmerkungen 1. Teile für die Motorbefestigung sind beigefügt und diese Abbildung zeigt den fertigen Zustand, nachdem der Motorflansch durch den Kunden montiert wurde.

- 2. Sollte der Motor nach rechts oder links umgelenkt werden, ist der Motorflansch ca. 8 mm tiefer als die Unterseite des Tisches.
- 3. Sollte der Motor nach oben umgelenkt werden, ist der Motorflansch ca. 6 mm tiefer als die Unterseite des Tisches.

TE86BF (Ausführung mit Motorumlenkung)

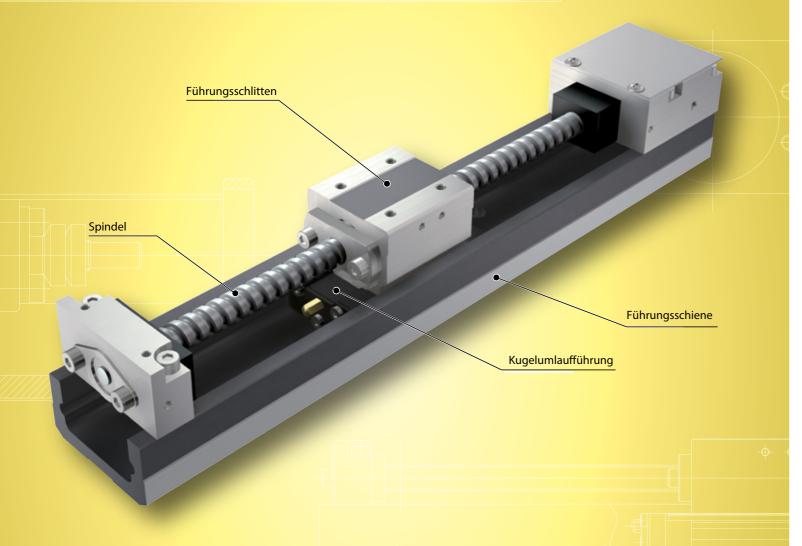
Einheit: mm

II-28

Tischlänge	Gesamtlänge	Hublänge	Gewindebohrungen des Tisches	Masse (Ref.)
L,	L	S (1)	n	kg (²)
340	375,5	200 (90)	3	4,6
440	475,5	300 (190)	4	5,2
540	575,5	400 (290)	5	5,8
640	675,5	500 (390)	6	6,4
740	775,5	600 (490)	7	7,0
840	875,5	700 (590)	8	7,6
940	975,5	800 (690)	9	8,1

A - A Ouerschnitt

Hinweise (1) Der Wert gibt die maximale Hublänge bei montierten Endsensoren an. Der Wert in (1) gibt die Abmessungen für zwei dicht beieinander stehende Führungsschlitten an


(2) Der Wert gibt die Masse des gesamten Tisches mit einem Führungsschlitten an und ist mit zwei Führungsschlitten um 0,6 kg schwerer.

Anmerkungen

- 1. Teile für die Motorbefestigung sind beigefügt und diese Abbildung zeigt den fertigen Zustand, nachdem der Motorflansch durch den Kunden montiert wurde.
- 2. Sollte der Motor nach rechts oder links umgelenkt werden, ist der Motorflansch ca. 8 mm tiefer als die Unterseite des Tisches.
- Sollte der Motor nach rechts oder links umgelenkt werden, ist der Motorflansch ca. 8 mm tiefer als die Unterseite des Tisches.
 Sollte der Motor nach oben umgelenkt werden, ist der Motorflansch ca. 6 mm tiefer als die Unterseite des Tisches.

1N=0,102kgf=0,2248lbs.

Wichtige Produktbeschreibungen

Antriebsmethode	Präzisionsspindel und gerollte Spindel
Wälzkörper-Linearführung	Kugelumlaufführung
Eingebaute Schmierplatte	Nicht eingebaut (Die Produktbezeichnung wird für Ihre Auswahl bereitgestellt, um eine "C-Lube"- Schmierplatte hinzuzufügen oder nicht)
Tisch- und Gestellmaterial	Kohlenstoffstahl
Sensor	Nach Produktbezeichnung auswählen

Genauigkeit

		Einheit: mm
	Wiederholgenauigkeit	±0,002~0,040
	Positioniergenauigkeit	0,020~0,050
Ī	Leerlauf	-
	Parallelität der Tischbewegung A	_
	Parallelität der Tischbewegung B	0,008~0,030
	Verwindungsgenauigkeit	-
	Geradheit	-
	Umkehrspiel	0,003~0,050

Vorteile

■ Kompakter und schmaler Positioniertisch mit U-förmiger Führungsschiene

Bei dem Präzisionspositioniertisch TU handelt es sich um einen kompakten und schmalen Positioniertisch mit einem in einer U-förmigen Führungsschiene angeordneten Führungsschlitten. Durch die U-förmige Führungsschiene wird ebenfalls die Steifigkeit der Führungsschiene unter Momentbelastungen und Drehbewegungen stark erhöht. Die Führungsschiene kann als Konstruktionsträger der Maschine und der Gerätschaft verwendet werden, wodurch für den Anwender eine größere Freiheit beim Design entsteht.

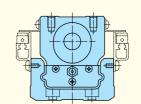
● Führungsschlitten mit hoher Genauigkeit und hoher Steifigkeit als eine Einheit

Der Führungsschlitten ist integraler Bestandteil der Linear-Wälzkörperführung, in dem Stahlkugeln mit großen Durchmesser in zwei Reihen mit Vierpunktkontakt mit den Laufbahnen angeordnet sind. Daher kann selbst bei Anwendungen mit Belastungen aus unterschiedlichen Richtungen oder komplexen Belastungen eine hochgenaue und hochsteife Positionierung erziehlt werden.

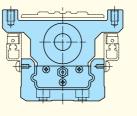
● Die optimale Tischausführung kann → Seite II-33 aus einer Reihe von Optionen ausgewählt werden

Für jede spezifische Anwendung kann ganz einfach ein optimaler Positioniertisch zusammengestellt werden, indem Sie die erforderlichen Spezifikationen aus unserem umfangreichen Größenvarianten und einer Vielzahl an Optionen durch Angabe der Produktbezeichnung auswählen.

Variation

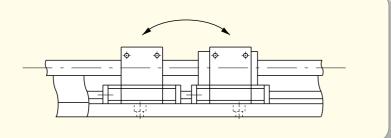

Form		Modell	Breite Führungsschiene (mm)								
	FORM	Modeli	25	30	40	50	60	86	100	130	
Standard	Kurzer Schlitten	ти…с	_	_	☆	☆	☆	☆	_	_	
	Standardschlitten	TU···S	☆	☆	☆	\Rightarrow	☆	☆	☆	☆	
	Langer Schlitten	TU…G	_	_	☆	\Rightarrow	☆	☆	_	_	
Flanschmodell	Kurzer Schlitten	TU···FC	_	_	_	_	☆	☆	_	_	
	Standardschlitten	TU···F	☆	☆	☆	$\stackrel{\wedge}{\Rightarrow}$	☆	☆	$\stackrel{\wedge}{\sim}$	\Rightarrow	
	Langer Schlitten	TU···FG	_	_	_	_	☆	☆	_	_	

1N=0,102kgf=0,2248lbs. 1mm=0,03937 Zoll


Sonderausführungen, die über die Produktbezeichnung ausgewählt werden können

Form und Länge der Führungswagen

Es kann aus zwei Formen, dem "Standard"-Modell und dem Flanschmodell, sowie drei Modellen mit unterschiedlichen Längen mit gleichem Querschnitt, d. h. Kurz, Standard, Lang, gewählt werden.


Kurz (C), Standard (Kein Symbol), Lang (G)

Kurz (FC), Standard (F), Lang (FG)

Anzahl der Führungswagen

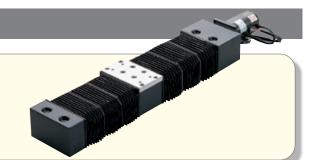
Je nach angewendeter Last und Momentbelastung können zwei Führungswagen auf der Führungsschiene montiert werden.

Modell und Steigung der Spindel

Je nach benötigter Genauigkeit können gerollte und Präzisionsspindeln gewählt werden. Die Spindelsteigung kann ebenfalls ausgewählt werden. Die Ausführung ohne Spindel kann als mitgeführte Wälzkörper-Linearführung in biaxialer paralleler Anordnung verwendet werden.

Bezeichnung der Sensoren

Für den Einbau stehen verschiedene Sensoren, z. B. Endsensoren und Referenzsensoren, zur Verfügung.

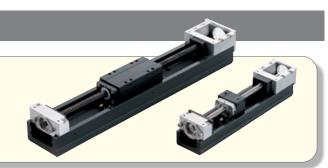

Tisch mit C-Lube Wartungsarbeiten wie z.B. das Nachschmieren der Spindel und Wälzkörper-Linearführungen können durch das Anbringen einer mit Schmiermittel getränkten "C-Lube"-Schmierplatte signifikant reduziert

Ausführung mit Motorumlenkung

Durch Verwendung einer Motorumlenkung kann die Gesamtlänge des Tisches verkürzt und dadurch Platz gespart werden.

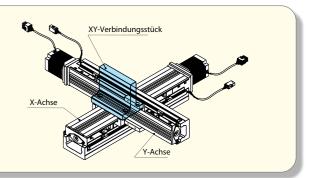
Mit Abdeckblech

An Tischen mit Flansch kann ein Abdeckblech befestigt werden.



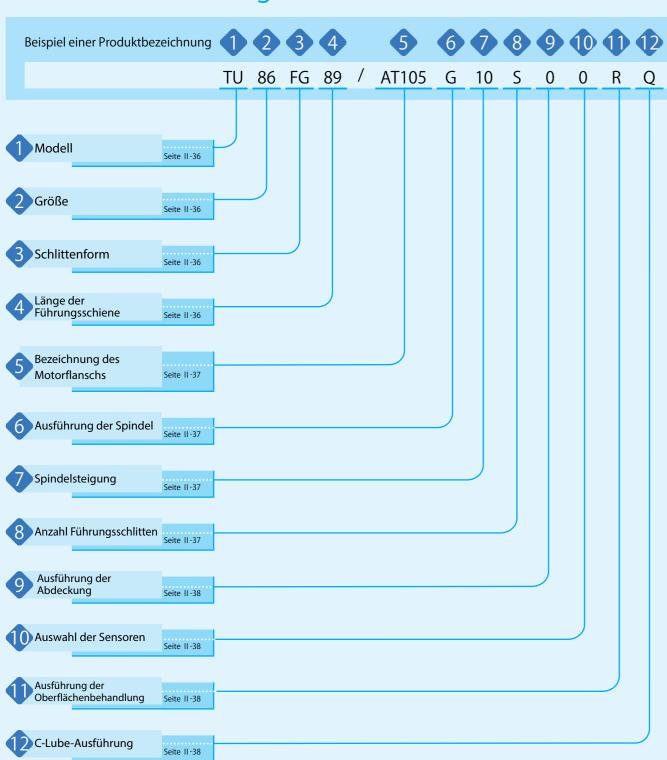
Tisch mit Faltenbälgen

Eine Baureihe von Tischen mit Faltenbälgen ist verfügbar, um dem Eindringen von Fremdkörpern in den Tisch durch eine Abdeckung der Wälzkörper-Linearführung und des Antriebsbereichs mit Faltenbälgen vorzubeugen.


Schwarchromatierung der Oberflächen

Zur Verbesserung der Korrosionbeständigkeit wird auf die Oberflächen von Führungswagen und Spindel eine schwarze Chrombeschichtung aufgetragen.

XY-Verbindungsstück


Ein XY-Tisch kann leicht konfiguriert werden, da eine Reihe an XY-Verbindungsstücke erhältlich sind.

11 - 33

werden.

Produktbezeichnung.

Produktbezeichnung und Ausführung ...

Tabelle 1 Führungsschlittenform

Modell und Größe	Modellcode								
Modell ullu Globe	TU···C	TU···S	TU···G	TU···FC	TU···F	TU···FG			
TU 25	_	0	_	_	0	-			
TU 30	_	0	_	_	0	_			
TU 40	0	0	0	_	0	_			
TU 50	0	0	0	_	0	-			
TU 60	0	0	0	0	0	0			
TU 86	0	0	0	0	0	0			
TU100	_	0	_	_	0	_			
TU130	_	0	_	_	0	_			

Länge der Führungsschiene
Wählen Sie aus der in Tabelle 2.1 und 2.2 aufgeführten [Bezeichnung] die gewünschte
Führungsschienenlänge aus.

Tabelle 2.1 Länge der Führungsschiene (Ausführung ohne Motorumlenkung) Einheit: mm Modell und [Bezeichnung] der Länge und Abmessungen der Führungsschiene Größe TU 25 [13] 130 [16] 165 [20] 200 TU 30 [14] 140 [18] 180 [22] 220 [26] 260 [30] 300 [34] 340 [24] 240 [30] 300 TU 40 [18] 180 [36] 360 [42] 420 [22] 220 [30] 300 [38] 380 [70] 700 TU 50 [46] 460 [54] 540 [62] 620 TU 60 [29] 290 [39] 390 [49] 490 [59] 590 [79] 790 [99] 990 [119]1 190 [69] 690 TU 86 [49] 490 [59] 590 [99] 990 [109] 1 090 [119]1 190 [139]1 390 [159] 1 590 TU100 [101] 1 0 10 | [116] 1 160 | [131] 1 3 10 | [146] 1 460 [101]1 010 | [116]1 160 | [131]1 310 | [146]1 460 |

Anmerkung: Hublängen finden Sie in den Maßtabellen ab Seite II -63.

Tabelle 2.2 Länge der Führungsschiene (Ausführung mit Motorumlenkung)

Einheit: mm

Modell und Größe	[Bezeichnung] der Länge und Abmessungen der Führungsschiene									
TU 40	[14] 140	[20] 200	[26] 260	[32] 320	[38] 380	_	_	_		
TU 50	[18] 180	[26] 260	[34] 340	[42] 420	[50] 500	[58] 580	[66] 660	_		
TU 60	[24] 244	[34] 344	[44] 444	[54] 544	[64] 644	[74] 744	_	_		
TU 86	[44] 442	[44] 442 [54] 542 [64] 642 [74] 742 [84] 842 [94] 942 [104] 1042 [114] 1142								

Anmerkung: Hublängen finden Sie in den Maßtabellen ab Seite II -75.

Bezeichnung des Motorflanschs

AT100 : Ausführung ohne Motorumlenkung Ohne Motorflansch AT101 bis AT125 : Ausführung ohne Motorumlenkung Mit Motorflansch AR100 : Ausführung mit Motorumlenkung Ohne Motorflansch AR101 bis AR110 : Ausführung mit Motorumlenkung Mit Motorflansch

Die Möglichkeit der Ausführung mit Motorumlenkung wird in Tabelle 3 aufgeführt. Wählen Sie zur Angabe des Motorflansches eine Bezeichnung aus Tabelle 6.1 und Tabelle 6.2 aus.

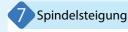
- · Motor sollte durch den Kunden montiert werden.
- Bitte geben Sie die für den zu verwendenden Motor anwendbare Ausführung mit Motorumlenkung sowie Motorflansch an.
- · Sollte die Ausführung ohne Motorumlenkung und mit Motorflansch gewählt werden, wird der Tisch mit einer montierten, in Tabelle 7 angegebenen, Kupplung geliefert. Die endgültige Anpassung sollte jedoch durch den Kunden erfolgen, da sie nur vorübergehend fixiert wird. Bei einem Produkt ohne Motorflansch (AT100) ist keine Kupplung angebracht.
- Wenn die Ausführung mit Motorumlenkung und Motorflansch angegeben wird, werden "für den angegebenen Motor entsprechendes Gehäuse, Riemenscheiben (auf Motor- und Spindelseite), Abdeckung, Motorhalterung, Riemen und für die Montage notwendige Schrauben" geliefert. Motorbefestigungsschrauben sollten durch den Kunden bereitgestellt werden.

Tabelle 3 Ausführung mit Motorumlenkung

Modell und Größe	Mit Moto	- Ohne Motorflansch	
Modell und Globe	AC-Servomotor Schrittmotor		Offile Motorifatiscri
TU 25	_	_	-
TU 30	_	_	_
TU 40	0	0	0
TU 50	0	0	0
TU 60	0	_	0
TU 86	0	_	0
TU100	_	_	_
TU130	_	_	-

6 Ausführung der Spindel

Kein Symbol: Gerollte Spindel


: Geschliffene Spindel

: Ohne Spindel

Wählen Sie das gewünschte Spindelmodell aus Tabelle 4 aus.

Bei der Angabe von N

- Wählen Sie bei Auswahlpunkt 4 AT100 oder AR100 und bei Auswahlpunkt 4 "Kein Symbol" aus.
- Wählen Sie bei Auswahlpunkt 1 "Ohne Sensor" aus (durch Angabe von 0).
- Bei Auswahlpunkt 4 können Sie nicht "Mit Faltenbälgen" angeben.

Wählen Sie aus in Tabelle 4 angegebenen möglichen Spindelsteigungen die gewünschte Spindelsteigung aus.

Tabelle 4 Spindelsteigung

Modell und Größe	Spindel-			Spindelste	igung mm		
Modell und Große	modell	4	5	8	10	20	25
TU 25	Geschliffene Spindel	0	-	_	_	-	-
TU 30	Geschliffene Spindel	1	0	1	-	-	-
	Gerollte Spindel	0	_	0	_	_	_
TU 40	Geschliffene Spindel	0	_	0	_	_	_
	Gerollte Spindel	_	0	_	0	_	_
TU 50	Geschliffene Spindel	-	0	-	0	-	_
	Gerollte Spindel	_	0	_	0	_	_
TU 60	Geschliffene Spindel	-	○(¹)	-	○(¹)	○(¹)	-
	Gerollte Spindel	_	_	_	○ (²)	○ (²)	_
TU 86	Geschliffene Spindel	-	_	-	○ (²)	0	_
TU100	Geschliffene Spindel	-	-	-	_	0	-
TU130	Geschliffene Spindel	_	-	_	_	-	0

Hinweise (1) Dies gilt nicht für die Führungsschienenlängen 990 mm und 1 190 mm.

(2) Dies gilt nicht für die Führungsschienenlängen 1 390 mm and 1 590 mm.

- 8 Anzahl Führungsschlitten
- S: Ein Führungsschlitten C: Zwei Führungsschlitten

- Ausführung der Abdeckung
- 0: Ohne Abdeckung C: Mit Abdeckblech (gilt für TU···FC, TU···F und TU···FG)
- J: Mit Faltenbälgen (gilt für TU60S und TU86S)
- Bei Auswahl "Mit Faltenbälgen (J)", wählen Sie bei Auswahlpunkt 🕸 "Ein Führungsschlitten (S)" aus.
- Das Modell "Mit Faltenbälgen" wird nicht für die Führungsschienen TU60 mit Führungsschienenlängen 990 und 1 190 mm sowie TU86 mit Führungsschienenlängen 1 390 und 1 590 mm angeboten.
- Das Modell "Mit Abdeckblech" wird nicht für die Führungsschienen TU60 mit Führungsschienenlängen 1 190 mm und TU86 mit Führungsschienenlängen 1 590 mm angeboten.
- 10 Sensorausführung
- 0: Ohne Sensor, mit Sensorschiene
- 2: Zwei Sensoren (Limit), mit Sensorschiene
- 3: Drei Sensoren (Limit und Vor-Referenzsensor), mit Sensorschiene
- 4: Vier Sensoren (Limit, Vor-Referenzsensor und Referenzsensor), mit Sensorschiene
- 9: Ohne Sensor, mit Sensorschiene

Ausführung der Oberflächenbehandlung Kein Symbol: Nicht behandelt

: Schwarzchromatierung der Oberflächen 1

Die Schwarzchromatierung der Oberflächen wird auf die Oberflächen von Führungsschlitten

und Führungsschiene aufgebracht.

: Schwarzchromatierung der Oberflächen 2

Zusätzlich zur Schwarzchromatierung der Oberflächen 1, werden auch Spindelwelle und

Mutter verchromt.

C-Lube-Ausführung

Kein Symbol: Kein C-Lube : Tisch mit C-Lube

C-Lube wird am Führungsschlitten und an den Stirnseiten der Spindelmutter angebracht. C-Lube ist eine aus Kunstharz bestehende Schmierplatte, die große Mengen Schmieröl enthält. Der beim Entlanggleiten oder -fahren entstehende Kontakt zwischen dem C-Lube, den Laufbahnoberflächen der Führungsschiene und der Spindel führt dazu, dass das Schmieröl weiter an die Laufbahnoberflächen abgegeben wird, wodurch die Anzahl der Wartungsstunden durch die Erhöhung des Schmierintervalls reduziert wird. Dies ist eine wirksame Gegenmaßnahme, um Abriebe auf Grund Schmierstoffmangels an schwer zugänglichen Stellen zu vermeiden.

•Bei Auswahl "Tisch mit C-Lube (Q)", wählen Sie bei Auswahlpunkt 🚳 "Geschliffene Spindel (G)" oder "ohne Spindel (N) aus.

Tabelle 5 C-Lube

Modell und Größe	Gerollte Spindel	Geschliffene Spindel	Ohne Spindel
TU 25	_	_	_
TU 30	_	_	_
TU 40	_	0	0
TU 50	_	0	0
TU 60	_	0	0
TU 86(1)	_	0	0
TU100	_	0	0
TU130	_	0	0

Hinweis (¹) Für die Führungsschienenlängen 1 390 mm und 1 590 mm in TU86, bitte **IKI** kontaktieren

Tabelle 6.1 Anwendung des Motorflansches (Ausführung ohne Motorumlenkung)

Model Nemplestring				dende Motormodelle				<u></u>		Motor	flansch			
Page	Art		Baureihe	Modell	leistung		TU25	TU30	TU40	TU50	TU60	TU86	TU100	TU130
Note				SGMMV-A2A	20	□25	AT101	AT101	_	_	_	_	_	_
SGMJV-08A 750 180		_		SGMMV-A3A	30		AT101	AT101	_	_	_	_	_	_
SGMJV-08A 750 180		6		SGMJV-A5A			_	_	AT102	AT102	_	_	_	_
SGMJV-08A 750 180		¥		SGMAV-A5A	50		_	_	AT102	AT102	_	_	_	_
SGMJV-08A 750 180		<u>6</u>		SGMJV-01A	100	□40	_	_	AT102	AT102	AT103	_	_	_
SGMJV-08A 750 180		%		SGMAV-01A	100		_	_	AT102	AT102	AT103	_	_	_
SGMJV-08A 750 180				SGMAV-C2A	150		_	_	_	_	AT103	_	_	_
SGMJV-08A 750 180			∑-V	SGMJV-02A	200		_	_	_	_	AT104	AT105	_	_
SGMJV-08A 750 180				SGMAV-02A	200		_	_	_	_	AT104	AT105	_	_
SGMJV-08A 750 180		A E		SGMJV-04A	400	□60	_	_	_	_	_	AT106	AT107	_
SGMJV-08A 750 180		8		SGMAV-04A	400		_	_	_	_	_	AT106	AT107	_
SGMJV-08A 750 180		ASI		SGMAV-06A	550		_	_	_	_	_	AT106	AT107	_
Somaroba		>		SGMJV-08A	750		_	_	_	_	_	_	_	AT108
Note				SGMAV-08A	/50	□80	_	_	_	_	_	_	_	AT108
Page			12.1		20		AT109	AT109	_	_	_	_	_	_
Page 100		_	J2-Jr		30		AT109	AT109	_	_	_	_	_	_
Name		ļ ģi			50		_	_	AT102	AT102	_	_	_	_
Name) ora		HF-KP053, HG-KR053	50		_	_	AT102	AT102	_	_	_	_
Name	ō	l G			400	<u> </u> ⊔40	_	_	AT102		AT103	_	_	_
Name	not	ric			100		_	_	AT102	AT102	AT103	_	_	_
Name	Ž.	ect	12.14	HF-MP23, HG-MR23	200		_	_	_	_	AT104	AT105	_	_
Name	-Ser		J3, J4	HF-KP23, HG-KR23	200		_	_	_	_	AT104	AT105	_	_
Name	Ä	litsubisł		HF-MP43, HG-MR43	400	⊟60	_	_	_	_	_	AT106	AT107	_
Name					400		_	_	_	_	_	AT106	AT107	_
HF-KP73, HG-KR73		Ξ					_	_	_	_	_	_	_	AT108
Note					750	□ 80	_	_	_	_	_	_	_	
MINAS AS MSMED1 100 10					50		_	_	AT110	AT110	_	_	_	_
Name					50		_	_	AT110	AT110	_	_	_	_
MSME08 MSME08 ADMA-RSL ADMA-O1L ADMA-O2L ADMA-O4L ADMA-O8L ADMA-O8L ASM66 AR66 AR66 AR69 AR69 AR69 AR98 BSS AR98 BSS AR98 BSS ASS66 ASS67 ASS66 ASS66 ASS66 ASS66 ASS67 ASS67 ASS67 ASS67 ASS68 BSS ASS68 B		tio		MSMD01		<u> </u>	_	_	AT110	AT110	AT111	_	_	_
MSME08 MSME08 ADMA-RSL ADMA-O1L ADMA-O2L ADMA-O4L ADMA-O8L ADMA-O8L ASM66 AR66 AR66 AR69 AR69 AR69 AR98 BSS AR98 BSS AR98 BSS ASS66 ASS67 ASS66 ASS66 ASS66 ASS66 ASS67 ASS67 ASS67 ASS67 ASS68 BSS ASS68 B		ora			100		_	_		AT110	AT111	_	_	_
MSME08 MSME08 ADMA-RSL ADMA-O1L ADMA-O2L ADMA-O4L ADMA-O8L ADMA-O8L ASM66 AR66 AR66 AR69 AR69 AR69 AR98 BSS AR98 BSS AR98 BSS ASS66 ASS67 ASS66 ASS66 ASS66 ASS66 ASS67 ASS67 ASS67 ASS67 ASS68 BSS ASS68 B		orp		MSMD02	200		_	_	_	_	AT112	AT113	_	_
MSME08 MSME08 ADMA-RSL ADMA-O1L ADMA-O2L ADMA-O4L ADMA-O8L ADMA-O8L ASM66 AR66 AR66 AR69 AR69 AR69 AR98 BSS AR98 BSS AR98 BSS ASS66 ASS67 ASS66 ASS66 ASS66 ASS66 ASS67 ASS67 ASS67 ASS67 ASS68 BSS ASS68 B		ic	MINAS A5		200		_	_	_	_	AT112		_	_
MSME08 MSME08 ADMA-RSL ADMA-O1L ADMA-O2L ADMA-O4L ADMA-O8L ADMA-O8L ASM66 AR66 AR66 AR69 AR69 AR69 AR98 BSS AR98 BSS AR98 BSS ASS66 ASS67 ASS66 ASS66 ASS66 ASS66 ASS67 ASS67 ASS67 ASS67 ASS68 BSS ASS68 B		son			100	⊟60	_	_	_	_	_	AT114	AT115	_
MSME08 MSME08 ADMA-RSL ADMA-O1L ADMA-O2L ADMA-O4L ADMA-O8L ADMA-O8L ASM66 AR66 AR66 AR69 AR69 AR69 AR98 BSS AR98 BSS AR98 BSS ASS66 ASS67 ASS66 ASS66 ASS66 ASS66 ASS67 ASS67 ASS67 ASS67 ASS68 BSS ASS68 B		na		MSME04	400		_	_	_	_	_	AT114	AT115	_
ADMA-RSL 50		<u>a</u>			750		_	_	_	_	_	_	_	AT116
ADMA-01L 100				MSME08	/50	□80	_	_	_	_	_	_	_	AT116
AR46		_ s		ADMA-R5L	50		_	_	AT102	AT102	_	_	_	_
AR46		ustria yster		ADMA-01L	100	□ 40	_	-	AT102	AT102	AT103	-	-	_
AR46		i Indi ent S o, Ltc	AD	ADMA-02L	200		_	_	_	_	AT104	AT105	_	_
AR46		itach Lipm C		ADMA-04L	400	□60	_	_	_	_	_	_	AT107	_
Part		Egr		ADMA-08L	750	□75	_	_	_	_	-	_	_	AT108
Part				AR46		□42	_	_	AT117	AT117	_	_	_	_
AR98				AR66		□60	_	_	_	_	AT118	AT119	_	_
AR911				AR69		□60	_	_	_	_	AT118	AT119	_	_
RK RK54 • CRK54 □42 — — AT122 AT122 — — — CRK RK56 • CRK56 (¹) □60 — — — AT123 AT124 — —		힐힐		AR98		□85	_	_	_	_	_	_	AT120	AT121
RK RK54 • CRK54 □42 — — AT122 AT122 — — — CRK RK56 • CRK56 (¹) □60 — — — AT123 AT124 — —		0., [a Schritt	AR911		□85	_	_	_	_	_	_	AT120	AT121
RK RK54 • CRK54 □42 — — AT122 AT122 — — — CRK RK56 • CRK56 (¹) □60 — — — AT123 AT124 — —	tor	۾ O	a sciille	AS46		□42	_	_	AT122	AT122	_	_	_	_
RK RK54 • CRK54 □42 — — AT122 AT122 — — — CRK RK56 • CRK56 (¹) □60 — — — AT123 AT124 — —	mo)TO		AS66		□60	_	_	_	_	AT123	AT124	_	_
RK RK54 • CRK54 □42 — — AT122 AT122 — — — CRK RK56 • CRK56 (¹) □60 — — — AT123 AT124 — —	ıritt	M		AS69		□60	_	_	_	_	AT123	AT124	_	_
RK RK54 • CRK54 □42 — — AT122 AT122 — — — CRK RK56 • CRK56 (¹) □60 — — — AT123 AT124 — —	Sch	TAL		AS98		□85	_	_	_	_	_	_	AT120	AT121
RK RK54 • CRK54 □42 — — AT122 AT122 — — — CRK RK56 • CRK56 (¹) □60 — — — AT123 AT124 — —		EN		AS911		□85	_	_	_	_	_	_	AT120	AT121
CRK RK56 • CRK56 (¹) □60 - - - AT123 AT124 - -		ORI		CRK52		□28	AT125	AT125	_		_	_	_	_
			RK	RK54 • CRK54	1	□42	_	_	AT122	AT122	_	_	_	_
RK59 □85 AT120 AT121			CRK	RK56 • CRK56	(1)	□60	_	_	_	_	AT123	AT124	_	_
				RK59		□85	_	_	_	_	_	_	AT120	AT121

Hinweis (1) Gilt für den Außendurchmesser Ø8 der Motorwelle.

Anmerkung: Detaillierte Motorspezifikationen finden Sie in dem jeweiligen Katalog des Herstellers.

Den Motorflansch für NEMA finden ab Seite III-31ff.

Tabelle 6.2 Anwendung des Motorflansches (Ausführung mit Motorumlenkung)

	Zu ver	wendende Mot	ormodelle		Flansch		Motor	flansch	
Art	Art Hersteller Baureihe Modell		Nennleistung W	Größe mm	TU40	TU50	TU60	TU86	
			SGMJV-A5A	- 50		AR101	AR101	_	-
			SGMAV-A5A	30		AR101	AR101	_	_
	YASKAWA		SGMJV-01A	100	□40	AR101	AR101	AR102	_
	ELECTRIC	Σ-V	SGMAV-01A] 100		AR101	AR101	AR102	_
	CORPORATION		SGMAV-C2A	150		_	_	AR102	_
			SGMJV-02A	200	□60	_	_	AR103	AR104
			SGMAV-02A	200		_	_	AR103	AR104
			HF-MP053, HG-MR053	- 50		AR101	AR101	_	_
		J3, J4	HF-KP053, HG-KR053	30	□40	AR101	AR101	_	_
	Mitsubishi Electric		HF-MP13, HG-MR13	100	⊔ 4 0	AR101	AR101	AR102	_
AC-Servo-	Corporation		HF-KP13, HG-KR13	100		AR101	AR101	AR102	_
motor			HF-MP23, HG-MR23	200	□60	_	_	AR103	AR104
			HF-KP23, HG-KR23	200	□60	_	_	AR103	AR104
			MSMD5A	- 50		AR105	AR105	_	_
			MSME5A] 50	□38	AR105	AR105	_	_
	Panasonic	MINAS A5	MSMD01	100	□36	AR105	AR105	AR106	_
	Corporation	IVIIINAS AS	MSME01	100		AR105	AR105	AR106	_
			MSMD02	200	□60	_	_	AR107	AR108
			MSME02	200		_	_	AR107	AR108
	Hitachi Industrial		ADMA-R5L	50	□40	AR101	AR101	_	_
	Equipment Systems	AD	ADMA-01L	100	⊔ 4 0	AR101	AR101	AR102	_
	Co., Ltd		ADMA-02L	200	□60	_	_	AR103	AR104
Schritt-	ORIENTAL MOTOR	a Schritt	AR46		□42	AR109	AR109	_	_
	Co., Ltd.	a scille	AS46		□42	AR110	AR110	_	_
motor	Co., Lta.	RK • CRK	RK54 • CRK54	4	□42	AR110	AR110	_	_

Anmerkung: Detaillierte Motorspezifikationen finden Sie im jeweiligen Katalog des Herstellers.

Tabelle 7 Kupplungsmodelle (Ausführung ohne Motorumlenkung)

11 3	·	3,	
Motor- befestigung	Kupplungsmodelle	Hersteller	Trägheitsmoment der Kupplung J _c ×10⁻⁵kg • m²
AT101	UA-15C- 5× 5	Sakai Manufacturing Co., Ltd	0,024
AT102	UA-20C- 5× 8	Sakai Manufacturing Co., Ltd	0,086
AT103	UA-25C- 8× 8	Sakai Manufacturing Co., Ltd	0,29
AT104	UA-30C- 8×14	Sakai Manufacturing Co., Ltd	0,603
AT105	UA-30C- 8×14	Sakai Manufacturing Co., Ltd	0,603
AT106	UA-35C- 8×14	Sakai Manufacturing Co., Ltd	1,34
AT107	UA-40C-12×14	Sakai Manufacturing Co., Ltd	2,61
AT108	UA-40C-15×19	Sakai Manufacturing Co., Ltd	2,61
AT109	UA-15C- 5× 6	Sakai Manufacturing Co., Ltd	0,024
AT110	UA-20C- 5× 8	Sakai Manufacturing Co., Ltd	0,086
AT111	UA-25C- 8× 8	Sakai Manufacturing Co., Ltd	0,29
AT112	UA-30C- 8×11	Sakai Manufacturing Co., Ltd	0,603
AT113	UA-30C- 8×11	Sakai Manufacturing Co., Ltd	0,603
AT114	UA-35C- 8×14	Sakai Manufacturing Co., Ltd	1,34
AT115	UA-40C-12×14	Sakai Manufacturing Co., Ltd	2,61
AT116	UA-40C-15×19	Sakai Manufacturing Co., Ltd	2,61
AT117	MSTS-16C- 5× 6	Nabeya Bi-tech Kaisha	0,090
AT118	MSTS-25C- 8×10	Nabeya Bi-tech Kaisha	0,710
AT119	MSTS-25C- 8×10	Nabeya Bi-tech Kaisha	0,710
AT120	MSTS-40C-12×14	Nabeya Bi-tech Kaisha	9,0
AT121	MSTS-40C-14×15	Nabeya Bi-tech Kaisha	9,0
AT122	MSTS-16C- 5× 5	Nabeya Bi-tech Kaisha	0,090
AT123	MSTS-25C- 8× 8	Nabeya Bi-tech Kaisha	0,710
AT124	MSTS-25C- 8× 8	Nabeya Bi-tech Kaisha	0,710
AT125	MSTS-12C- 5× 5	Nabeya Bi-tech Kaisha	0,022

 $Anmerkung: Detaillierte\ Angaben\ zu\ den\ Kupplungen\ finden\ Sie\ im\ jeweiligen\ Herstellerkatalog.$

Ausführungen .

Tabelle 8.1 TU Genauigkeit (Gerollte Spindel)

Einheit: mm

Länge der Füh	rungsschiene	Wiederhol-	Parallelität der Tischbewegung	Umkehrspiel (¹)	
Oberhalb	Unterhalb	genauigkeit	В		
_	500	±0.025	0,015		
500	800	±0,025 (±0,040)	0,020	0,050	
800	1 200	(±0,040)	0,025		

Hinweis (1) Dies gilt nicht für die Ausführung mit Motorumlenkung.

Anmerkung: Die Werte für Wiederholgenauigkeit in () sind Referenzwerte bei Ausführung mit Motorumlenkung, sofern die Riemenspannung korrekt eingestellt wurde.

Tabelle 8.2 TU Genauigkeit (Geschliffene Spindel)

Einheit: mm

Tabelle 8.2 To Genadigite (Gesenimene Spinder)											
	Länge der Füh	nrungsschiene	Wiederhol	genauigkeit	Positionierge	nauigkeit (¹)	Parallelität der T	ischbewegung B			
-	Oberhalb	Unterhalb	Kurzer Schlitten	Standard- schlitten Langer Schlitten	Kurzer Schlitten	Standard- schlitten Langer Schlitten	Kurzer Schlitten	Standard- schlitten Langer Schlitten	Umkehrspiel (¹)		
	_	400(350)			0,030 0,020	0,015	0,008				
	400(350)	500(500)			0,030	0,020	0,013	0,010			
	500(500)	600(550)			0,035	0,025		0,010			
	600(550)	700(700)			0,033	0,023	0,020	0,012			
	700(700)	800(800)			0,040	0,030		0,012			
	800(800)	900(900)	±0,004	±0,002	0,010	0,030		0,014	0.002		
	900(900)	1 000 (1 000)	(±0,020)	(±0,020)	0,045	0,035	0,025	0,011	0,003		
	1 000 (1 000)	1 100 (1 100)			0,015	0,033	0,023	0,016			
	1 100 (1 100)	1 200			0,050	0,040		0,010			
	1 200	1 400			_	0,040	_				
	1 400	1 500			_	0,045	_	0,030			
	1 500	1 610			_	0,050	_				

Hinweis (¹) Dies gilt nicht für die Ausführung mit Motorumlenkung.

Anmerkung: Die Werte für Wiederholgenauigkeit in () Referenzwerte bei Ausführung mit Motorumlenkung, sofern die Riemenspannung korrekt eingestellt wurde.

Tabelle 9.1 Maximale Geschwindigkeit (AC-Servomotor)

	Modell und Größe	Länge der	Maximale Geschwindigkeit mm/s							
Motormodell		Führungsschiene	Steigung	Steigung	Steigung	Steigung	Steigung	Steigung	Steigung	
		mm	2 mm	4 mm	5 mm	8 mm	10 mm	20 mm	25 mm	
	TU 25	≤ 200	_	400	_	_	_	_	_	
	TU 30	≤ 340	_	_	500	_	_	_	_	
	TU 40	_	_	400 (390)	_	800 (790)	_	_	_	
	TU 50	≤ 540	_	_	500 (390)	_	1 000 (780)	_	_	
		620	_	_	370 (350)	_	750 (710)	_	_	
		700	_	_	280 (260)	_	560 (540)	_	_	
	TU 60	≤ 590	_	-	470 (330)	_	930 (660)	1 860	_	
		690	_	_	380 (330)	_	780 (660)	1 620	_	
		790	-	-	270 (280)	_	560 (560)	1 170	_	
		990	_	_	(160)	_	(330)	_	_	
		1 190	_	_	(110)	_	(210)	_	_	
AC-Servo-	TU 86	≤ 690	_	_	_	_	750 (530)	1 480 (1 050)	-	
motor		790	-	_	-	_	700 (530)	1 410 (1 050)	-	
		890	-	-	-	_	530 (530)	1 060 (1 050)	-	
		990	-	_	-	_	410 (410)	830 (830)	-	
		1 090	ı	-	ı	-	330 (330)	670 (670)	ı	
		1 190	-	_	-	_	270 (270)	550 (550)	-	
		1 390	_	_	_	_	_	530	_	
		1 590	_	_	_	_	_	390	_	
	TU100	1 010	_	_	_	_	_	1 110		
		1 160	_	_	_	_	_	990	_	
		1 310	_	_	_	_	_	730	_	
		1 460 1 010	_			_	_	560	1 110	
	TU130	1 160		_	_	_	_		1 110	
		1 310	_	_	_	_			1 110	
		1 460	_	_	_	_	_		930	
		1 610	_		_	_	_		730	
A 1) \\\\) gilt für garallta S	a tanala la						730	

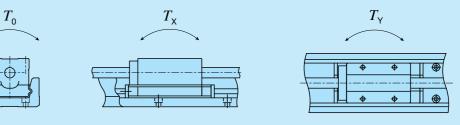
Anmerkung 1. Der Wert in () gilt für gerollte Spindeln.

2. Um die durchführbare, maximale Geschwindigkeit zu ermitteln, müssen die Betriebsbedingungen des zu verwendeten Motors und die Lastbedingungen berücksichtigt werden

Tabelle 9.2 Maximale Geschwindigkeit (Schrittmotor)

Motor- modell	Modell und Größe	Länge der Führungsschiene	Drehzahl des	Maximale Geschwindigkeit mm/s						
			Motors min ⁻¹	Steigung	Steigung	Steigung	Steigung	Steigung	Steigung	Steigung
		mm		2 mm	4 mm	5 mm	8 mm	10 mm	20 mm	25 mm
	TU 25	≤ 200	1 800	_	120	_	_	-	_	_
	TU 30	≤ 340	1 800	-	-	150	_	ı	1	ı
	TU 40	_	1 800		120	I	240	ı	1	I
	TU 50	_	1 800	1	1	150	_	300	1	ı
	TU 60	≤ 790	1 800	1	-	1	_	1	600	ı
		≤ 990	1 800	-	-	150	_	300	1	1
		1 190	1 290	-	-	108	_	215	1	1
	TU 86	≤ 990	1 800	_	_	-	_	300	600	-
Schritt-		1 090	1 770	_	_	-	_	295	590	-
motor		1 190	1 460	_	_	-	_	243	487	-
		1 390	1 610	_	_	_			537	_
		1 590	1 200	_	_			-	400	_
	TU100	≤ 1 160	1 800	_	_	-		-	600	_
		1 310	1 780		_	-		1	593	-
		1 460	1 400	_	_	-	_	-	467	_
	TU130	≤ 1 310	1 800	_	_	-	_	-	_	750
		1 460	1 720	_	_	-	_			717
		1 610	1 390	_	_	-	_		_	579

Anmerkung: Um die durchführbare, maximale Geschwindigkeit zu ermitteln, müssen die Betriebsbedingungen des zu verwendeten Motors und die Lastbedingungen berücksichtigt werden.


Table 10 Maximale Belastung

odell und Größe	Spindelmodell	Spindelsteigung	Länge des Führungsschlittens	Maximale Belastung kg		
	·	mm		Horizontal	Vertikal	
TU 25	Geschliffene Spindel	4	Standard	11	4,8	
TU 30	Geschliffene Spindel	5	Standard	15	5	
			Kurz	24	11	
		4	Standard	39	11	
	Geschliffene Spindel		Lang	59	11	
	Geschiiffene Spindei	8	Kurz	24	7	
			Standard	39	7	
TU 40			Lang	46	7	
			Kurz	24	8	
		4	Standard	39	8	
	Gerollte Spindel		Lang	59	8	
			Kurz	24	5	
		8	Standard	32	4,8	
			Lang	32	4,8	
			Kurz	35	13	
		5	Standard	64	13	
	Geschliffene Spindel		Lang	100	13	
		40	Kurz	35	8	
		10	Standard	44	8	
TU 50			Lang	43	8	
	Gerollte Spindel -	_	Kurz	35	11	
		5	Standard	64	11	
		10	Lang Kurz	100 35	11	
			Standard	47	9	
				47	8	
			Lang Kurz	48	16	
		5	Standard	88	15	
			Lang	146	15	
			Kurz	48	11	
	Geschliffene Spindel	10	Standard	58	10	
	Ceseiiiiie spiiidei	10	Lang	58	10	
			Kurz	29	10	
TU 60		20	Standard	28	9	
			Lang	28	9	
	Gerollte Spindel		Kurz	48	14	
		5	Standard	88	13	
			Lang	143	13	
			Kurz	46	8	
		10	Standard	45	8	
			Lang	45	7	
	Geschliffene Spindel - Gerollte Spindel -		Kurz	97	29	
		10	Standard	154	28	
			Lang	153	27	
			Kurz	69	21	
		20	Standard	75	21	
TU 86			Lang	75	21	
10 80			Kurz	97	23	
		10	Standard	124	22	
			Lang	123	21	
			Kurz	49	16	
		20	Standard	47	15	
			Lang	47	14	
TU100	Geschliffene Spindel	20	Standard	81	27	
TU130	Geschliffene Spindel	25	Standard	92	34	

Anmerkung: Dieser Wert gilt für einen Führungsschlitten.

Tabelle 11 Nennlast der Wälzkörper-Linearführung

Modell und	Länge des Führungsschlittens	Dynamische	Statische Grundnennlast C _o N	Statisches Nennmoment (1) N·m			
Größe		Grundnennlast C N		T _o	T _x	T _y	
TU 25	Standard	1 770	2 840	20,3(40,6)	10,1(53,7)	8,4(45,0)	
TU 30	Standard	2 280	3 810	34,9(69,8)	16,9(87,5)	14,2(73,4)	
	Kurz	6 050	6 110	83,8(167,6)	22,8(185)	22,8(185)	
TU 40	Standard	8 410	9 780	134 (268)	53,0(351)	53,0(351)	
	Lang	11 200	14 700	201 (402)	113 (649)	113 (649)	
	Kurz	8 930	8 800	156 (312)	39,5(315)	39,5 (315)	
TU 50	Standard	13 500	15 800	280 (560)	114 (711)	114 (711)	
	Lang	18 400	24 600	436 (872)	260 (1 420)	260 (1 420)	
	Kurz	12 400	12 000	236 (472)	62.7(486)	62,7 (486)	
TU 60	Standard	18 800	21 600	425 (850)	181 (1 150)	181 (1 150)	
	Lang	26 800	35 900	708 (1 416)	472 (2 470)	472 (2 470)	
TU 86	Kurz	24 100	23 800	677 (1 354)	183 (1 280)	183 (1 280)	
	Standard	41 400	51 500	1 470 (2 940)	764 (4 120)	764 (4 120)	
	Lang	49 900	67 300	1 920 (3 840)	1 270 (6 290)	1 270 (6 290)	
TU100	Standard	54 600	68 500	2 230 (4 460)	1 210 (6 460)	1 210 (6 460)	
TU130	Standard	70 300	88 800	3 920 (7 840)	1 830 (9 630)	1 830 (9 630)	

Hinweis (¹) Bei den in den oberen Abbildungen angegebenen Richtungen, gilt der Wert in () für zwei dicht beieinander stehende Führungsschlitten.

||-44

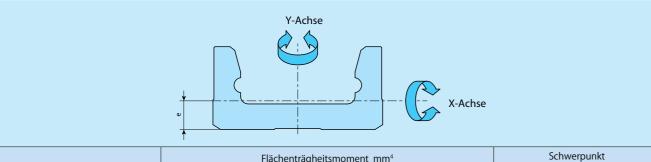
					Dynamische	Statische
Modell und	Spindelmodell	Steigung	Schaftdurchmesser	Axialspiel	Grundnennlast	Grundnennlast
Größe	Spirideimodeli	mm	mm	mm	С	C _o
					N	Ň
TU 25	Geschliffene Spindel	4	6	≤ 0,005	950	1 630
TU 30	Geschliffene Spindel	5	8	≤ 0,005	1 080	2 160
	Gerollte Spindel	4	8	~ 0.0E	1 600	2 800
TU 40	deronte spiridei	8	0	≤ 0,05	1 000	1 600
	Geschliffene Spindel	4	8	≤ 0,005	2 290	3 575
	descrimente apinder	8	0	≥ 0,003	1 450	2 155
	Gerollte Spindel	5	10	≤ 0,05	2 300	4 800
TU 50	deronte spiridei	10	10	≥ 0,03	1 850	3 200
10 30	Geschliffene Spindel	5	10	≤ 0,005	2 730	4 410
		10	10	≥ 0,003	1 720	2 745
	Gerollte Spindel	5	12	≤ 0,05	2 800	5 000
		10	12	≥ 0,05	1 800	3 200
TU 60		5			3 230	6 320
	Geschliffene Spindel (1)	10	12	≤ 0,005	2 300	3 920
		20			2 300	3 920
	Gerollte Spindel (2)	10	15	≤ 0,05	4 900	9 100
	defolite Spirider()	20	13	≥ 0,05	3 900	5 050
TU 86	Geschliffene Spindel (2)	10	15	≤ 0,005	6 080	12 500
	·	20		≥ 0,003	4 510	7 840
	Geschliffene Spindel (3)	20	20	≤ 0,005	6 620	12 600
TU100	Geschliffene Spindel	20	20	≤ 0,005	6 620	12 600
TU130	Geschliffene Spindel	25	25	≤ 0,005	9 700	19 600

Hinweise

(1) Dies gilt nicht für die Führungsschienenlängen 990 mm und 1 190 mm.

(2) Dies gilt nicht für die Führungsschienenlängen 1 390 mm and 1 590 mm.

(3) Dies gilt für die Führungsschienenlängen 1 390 mm and 1 590 mm.


Tabelle 12.2 Ausführungen der Spindel 2

Einheit: mm

odell und Größe	Länge der Führungsschiene	Spinde		Schaftdurchmesser	Gesamtläng 146
TIL OF	130	Geschliffen	_		
TU 25	165	Geschliffen	_	6	181
	200	Geschliffen			216
	140	Geschliffen	_	_	156
	180	Geschliffen	_		196
TU 30	220	Geschliffen	_	8	236
10 30	260	Geschliffen	_		276
	300	Geschliffen	_		316
	340	Geschliffen	_		356
	180	Geschliffen	Gerollt		158
	240	Geschliffen	Gerollt		218
	300	Geschliffen	Gerollt	1 –	278
	360	Geschliffen	Gerollt	1 -	338
	420	Geschliffen	Gerollt	-	398
TU 40	140	Geschliffen	Gerollt	8	158
	200	Geschliffen	Gerollt	-	218
	260	Geschliffen	Gerollt	-	278
				-	
	320	Geschliffen	Gerollt	_	338
	380	Geschliffen	Gerollt		398
	220	Geschliffen	Gerollt		198
	300	Geschliffen	Gerollt		278
	380	Geschliffen	Gerollt		358
	460	Geschliffen	Gerollt		438
	540	Geschliffen	Gerollt		518
	620	Geschliffen	Gerollt		598
TIL 50	700	Geschliffen	Gerollt	10	678
TU 50	180	Geschliffen	Gerollt	10	198
	260	Geschliffen	Gerollt		278
	340	Geschliffen	Gerollt		358
	420	Geschliffen	Gerollt	-	438
	500	Geschliffen	Gerollt	-	518
	580	Geschliffen	Gerollt	-	598
				-	678
	660	Geschliffen	Gerollt		
	290	Geschliffen	Gerollt	_	263
	390	Geschliffen	Gerollt	_	363
	490	Geschliffen	Gerollt	_	463
	590	Geschliffen	Gerollt		563
	690	Geschliffen	Gerollt		663
	790	Geschliffen	Gerollt		763
TU 60	990	_	Gerollt	12	963
10 00	1 190	_	Gerollt	12	1 163
	244	Geschliffen	Gerollt		263
	344	Geschliffen	Gerollt		363
	444	Geschliffen	Gerollt		463
	544	Geschliffen	Gerollt		563
	644	Geschliffen	Gerollt		663
	744	Geschliffen	Gerollt		763
	490	Geschliffen	Gerollt		461
	590	Geschliffen	Gerollt		561
	690	Geschliffen	Gerollt		661
	790	Geschliffen	Gerollt	-	761
	890	Geschliffen	Gerollt	15	861
	990	Geschliffen	Gerollt	-	961
	1 090		Gerollt		
		Geschliffen		-	1 061
	1 190	Geschliffen	Gerollt		1 161
TU 86	1 390	Geschliffen	_	20	1 361
	1 590	Geschliffen	_		1 561
	442	Geschliffen	Gerollt		461
	542	Geschliffen	Gerollt		561
	642	Geschliffen	Gerollt		661
	742	Geschliffen	Gerollt	15	761
	842	Geschliffen	Gerollt	15	861
	942	Geschliffen	Gerollt		961
	1 042	Geschliffen	Gerollt		1 061
	1 142	Geschliffen	Gerollt		1 161
	1 010	Geschliffen	—		972
	1 160	Geschliffen	_	-	1 122
TU100			_	20	
	1310	Geschliffen	_		1 272
	1 460	Geschliffen	_		1 422
	1 010	Geschliffen	_		972
	1 160	Geschliffen	_		1 122
TU130	1 310	Geschliffen	_	25	1 272
	1 460	Geschliffen	_		1 422
	1 610	Geschliffen	_	1	1 572

II-46

Table 13 Flächenträgheitsmoment des Führungsschienenquerschnitts

	Flächenträgheit	Schwerpunkt	
Modell und Größe	I _x	l _y	e mm
TU 25	3,7×10 ²	7,5×10 ³	2,6
TU 30	9,3×10 ²	1,7×10 ⁴	3,3
TU 40	1,0×10 ⁴	6,8×10 ⁴	6,6
TU 50	2,8×10 ⁴	1,7×10 ⁵	8,7
TU 60	6,4×10 ⁴	3,8×10 ⁵	10,9
TU 86	2,4×10 ⁵	1,6×10 ⁶	14,6
TU100	5,9×10 ⁵	3,3×10 ⁶	18,8
TU130	1,4×10 ⁶	8,8×10 ⁶	23,0

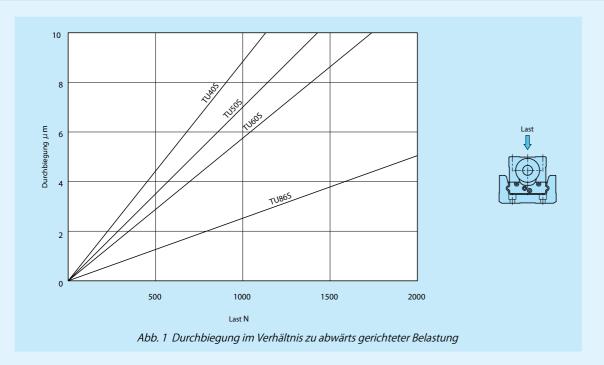


Tabelle 14.1 Trägheits- und Anlaufmoment des Tisches

		Trägheitsmoment des Tisches J _⊤ ×10-5kg • m²	A 1 (T ()
	Länge der Führungsschiene mm	Standardschlitten	Anlaufmoment T _s (²) N•m
Größe		Steigung 4mm	Geschliffene Spindel
	130	0,018	
TU25	165	0,021	0,01
	200	0,024	

Modell		Trägheitsmoment des Tisches J _T (³) ×10 ⁻⁵ kg·m²	Anlaufmoment T _s (2)			
und	Führungsschiene	Standardschlitten	N∙m			
Größe	mm	Steigung 5mm	Geschliffene Spindel			
	140	0,057				
	180	0,069				
TU30	220	0,082	0,015			
1030	260	0,095	0,015			
	300	0,107				
	340	0,120				

	Länge		Trägheitsı	Anlaufmoment T _s (²)							
Modell	der	Kurzer Schlitten		Standardschlitten		Langer Schlitten		N∙m			
und	Führungsschiene	Ct.:	Ch.:	Ct.:	C+ -:	Ct.::	C+-:	Gerollte	Spindel	Geschliffer	ne Spindel
Größe	(¹) mm	Steigung 4 mm	Steigung 8 mm	Steigung 4 mm	Steigung 8 mm	Steigung 4 mm	Steigung 8 mm	Steigung 4mm	Steigung 8mm	Steigung 4mm	Steigung 8mm
	180 (140)	0,05	0,07	0,06	0,09	_	_			0.03	0,04 (0,05)
	240 (200)	0,07	0,09	0,08	0,11	0,08	0,12				
TU40	300 (260)	0,09	0,11	0,10	0,12	0,10	0,14	0,03	0,04	0,03 (0,04)	
	360 (320)	0,11	0,13	0,12	0,14	0,12	0,16			(0,04)	
	420 (380)	0,13	0,15	0,13	0,16	0,14	0,18				

	Länge		Trägheitsi	moment des Ti	sches $J_{T}^{(3)}$ \times	10 ⁻⁵ kg•m²			Anlaufmo	ment T _s (2)		
Mode	ll der	Kurzer S	Kurzer Schlitten		Standardschlitten		Langer Schlitten		N•m			
und	Führungsschiene	Ch.:			Ct -:	Ct.::	6	Gerollte Spindel Geschliffene Spindel			ne Spindel	
Größ	e (¹) mm	Steigung 5 mm	Steigung 10 mm	Steigung 5 mm	Steigung 10 mm	Steigung 5 mm	Steigung 10 mm	Steigung 5mm	Steigung 10mm	Steigung 5mm	Steigung 10mm	
	220 (180)	0,17	0,21	0,18	0,27	_	_					
	300 (260)	0,23	0,28	0,24	0,33	0,26	0,40			0.04	0.05	
	380 (340)	0,29	0,34	0,30	0,39	0,32	0,46					
TU50	460 (420)	0,35	0,40	0,36	0,45	0,38	0,53	0,04	0,05	0,04 (0,05)	(0,06)	
	540 (500)	0,41	0,46	0,43	0,51	0,44	0,59			(0,03)	(0,00)	
	620 (580)	0,47	0,52	0,49	0,57	0,51	0,65					
	700 (660)	0,54	0,58	0,55	0,63	0,57	0,71					

	Länge			Trägheitsı	moment d	les Tische	s J _T (3) ×	10⁻⁵kg∙m	2		Anlaufmoment T _s (2)			
Modell			Kurzer Schlitten			Standardschlitten		Langer Schlitten		N∙m				
und											Gerollte	Spindel	Geschliffer	ne Spindel
Größe	(¹) mm	Steigung 5 mm	Steigung 10 mm	Steigung 20 mm	Steigung 5 mm	Steigung 10 mm	Steigung 20 mm	Steigung 5 mm	Steigung 10 mm	Steigung 20 mm	Steigung 5 mm	Steigung 10mm	Steigung 5 mm 10 mm	Steigung 20mm
	290 (244)	0,45	0,53	1,03	0,47	0,61	1,43	0,49	0,71	1,94				
	390 (344)	0,60	0,69	1,19	0,62	0,77	1,59	0,65	0,87	2,10				
	490 (444)	0,76	0,85	1,34	0,78	0,93	1,75	0,81	1,0	2,26		00	0,08	0,10
TU60	590 (544)	0,92	1,0	1,50	0,94	1,1	1,90	0,97	1,2	2,41	0,08		(0,09)	(0,12)
1000	690 (644)	1,1	1,2	1,66	1,1	1,2	2,06	1,1	1,3	2,57				
	790 (744)	1,2	1,3	1,82	1,3	1,4	2,22	1,3	1,5	2,73				
	990	1,6	1,7	_	1,6	1,7	_	1,6	1,8	_	0	10		
	1 190	1,9	2,0	_	1,9	2,1	_	1,9	2,2	_	0,	10	_	

- Hinweise (1) Der Wert in (1) stellt die Führungsschienenlänge der Ausführung mit Motorumlenkung dar.
 (2) Bei Verwendung von zwei Schlitten werden die Werte mit ca. 1,5 multipliziert. Im Fall der Ausführung mit Motorumlenkung werden die Werte
 - mit ca. 2,0 multipliziert. Der Wert in () stellt den Anlaufmoment der C-Lube-Ausführung dar.

 (3) Für die Ausführung mit Motorumlenkung fügen Sie bitte den folgenden Wert zu dem Wert in der Tabelle hinzu.

 TU40 und TU50: 0,17×10-5kg·m², TU60: 0,86×10-5kg·m²

II-48

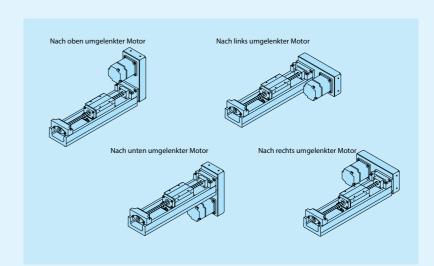
Tabelle 14.2 Trägheitsmoment des Tisches und Anlaufmoment

	Länge		Trägheitsm	oment des Ti	sches J _T (3)	< 10⁻⁵kg•m²		Anlaufmoment T _s (2)			
	der	Kurzer Schlitten		Standardschlitten		Langer Schlitten		N•m			
Modell und Größe	Führungsschiene	Chairman	Chairman	Ct.:	Ct -:	Chairman	Ch.:	Gerollte		Spindel Geschliffene Spindel	
una di obc	(¹) mm	Steigung 10 mm	Steigung 20 mm	Steigung 10 mm	Steigung 20 mm	Steigung 10 mm	Steigung 20 mm	Steigung 10mm	Steigung 20mm	Steigung 10mm	Steigung 20mm
	490(442)	2,1	2,9	2,3	3,9	2,4	4,4			0,10 (0,12)	
	590(542)	2,4	3,2	2,7	4,3	2,8	4,8		0,16		
	690(642)	2,8	3,6	3,1	4,6	3,2	5,1]			
	790(742)	3,2	4,0	3,5	5,0	3,6	5,5	0,10			0,16
TU 86	890(842)	3,6	4,4	3,9	5,4	4,0	5,9	0,10			(0,18)
10 80	990(942)	4,0	4,8	4,2	5,8	4,4	6,3				
	1 090 (1 042)	4,4	5,2	4,6	6,2	4,8	6,7				
	1 190 (1 142)	4,8	5,6	5,0	6,6	5,1	7,1				
	1 390	_	18	_	19	_	19			_	0.20
	1 590	_	20	_	21	_	22]	_		0,30

		Länge der	Trägheitsmoment des Tisches $J_{T} \times 10^{-5} kg \cdot m^{2}$	Anlaufmoment T _s (²)		
	Modell und Größe	Führungsschiene	Standardschlitten	N∙m		
		mm	Steigung 20mm	Geschliffene Spindel		
		1 010	15			
	TU100	1 160	17	0,20		
	TU100	1 310	19	(0,26)		
		1 460	20			

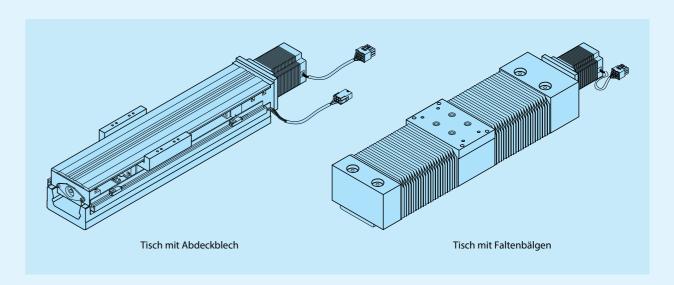
	Modell	Länge der	Trägheitsmoment des Tisches $J_{_{T}} \times 10^{-5} kg \cdot m^2$	Anlaufmoment T _s (2)			
	und Größe	Führungsschiene	Standardschlitten	N∙m			
	and droise	mm	Steigung 25mm	Geschliffene Spindel			
		1 010	39				
		1 160	43	0.40			
	TU130	1 310	48	0,40 (0,50)			
		1 460	52	(0,50)			
		1 610	57				

Hinweise (1) Der Wert in (1) stellt die Führungsschienenlänge der Ausführung mit Motorumlenkung dar.


- (2) Bei Verwendung von zwei Schlitten werden die Werte mit ca. 1,5 multipliziert. Im Fall der Ausführung mit Motorumlenkung werden die Werte mit ca. 2,0 multipliziert. Der Wert in () stellt den Anlaufmoment der C-Lube-Ausführung dar.
- (3) Für die Ausführung mit Motorumlenkung fügen Sie bitte den folgenden Wert zu dem Wert in der Tabelle hinzu. TU86: 0,86×10-5kg·m²

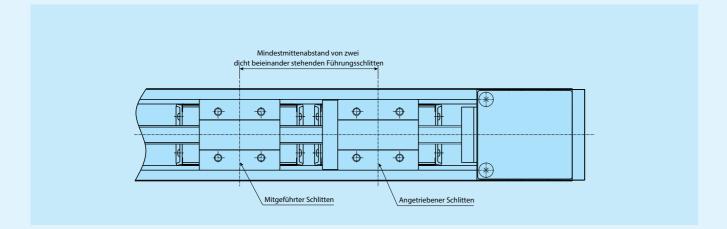
Ausführung mit Motorumlenkung.

Die Ausführung mit Motorumlenkung ist für den Präzisionspositioniertisch TU verfügbar. Durch die Umlenkung des Motors kann Platz gespart werden und die Gesamtlänge des Tisches reduziert werden. Für die Abmessungen der Ausführung mit Motorumlenkung siehe die jeweilige Maßtabelle.

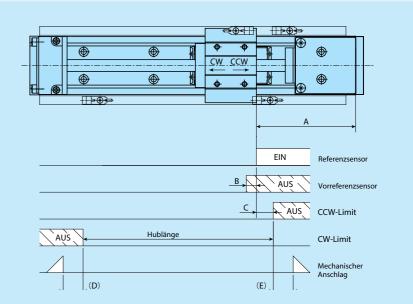

Bei der Ausführung mit Motorumlenkung sollte die Montage durch den Kunden erfolgen, da "für den angegebenen Motor entsprechendes Gehäuse, Riemenscheiben (auf Motor- und Spindelseite), Abdeckung, Motorhalterung, Riemen und für die Montage notwendige Schrauben" mitgeliefert werden. Jedoch sollten Motorbefestigungsschrauben durch den Kunden bereitgestellt werden.

Die Motorumlenkung kann in vier Richtungen, wie in folgender Abbildung angegeben, montiert werden.

Ausführung der Abdeckung


Abdeckblech und Faltenbälge sind für den Präzisionspositioniertisch TU zum Schutz gegen Staub verfügbar. Für die Abmessungen eines Tischs mit Faltenbälgen, siehe Maßtabellen auf den Seiten II-83 bis II-84.

Ausführung mit zwei Führungsschlitten.


Die Ausführung mit zwei Führungsschlitten ist für den Präzisionspositioniertisch TU verfügbar. Spindelmuttern werden auf dem motorseitigen, vom Motor angetriebenen Führungsschlitten montiert. Der auf der vom Motor gegenüberliegenden Seite liegende Führungsschlitten besitzt keine Spindelmutter und wird als Mitläufer genutzt.

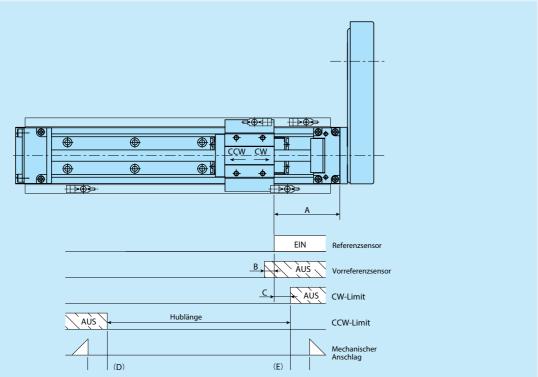
Es ist möglich, durch den Einsatz von zwei Führungsschlitten die Steifigkeit des Tisches gegenüber Momentbelastungen zu erhöhen (siehe Tabelle 11, Seite II-44). Bei der Kombination von zwei Führungsschlitten sollte mehr Platz als beim "Mindestabstand von zwei Führungsschlitten in engem Kontakt", der in der Maßtabelle auf den Seiten II-63 bis II-92 angegeben wird, verwendet werden (Eine Vergrößerung des Abstandes verkürzt den Hub).

Ausführung mit Sensoren

Tabelle 15.1 Sensor-Zeittafel (Ausführung ohne Motorumlenkung)

							Einheit: mm
Modell und Größe	Länge des Führungsschlittens	Spindel- steigung	А	В	С	D(1)	E
TU 25	Standard	4	50	2	10	8,4(6)	8
TU 30	Standard	5	50	3	10	10,9 (6,4)	8
	Kurz	4	85	2		7,5 (5.5)	4,5
	Kuiz	8	65	6		7,5(5.5)	4,5
TU 40	Standard	4	85	2	10	10,5 (8,5)	8
10 40	Stariuaru	8	05	6		10,5 (6,5)	0
	Lang	4	85	2		4,5 (7,5)	8
	Lariy	8	03	6		7,5 (7,5)	0
	Kurz	5	85	3		7,2 (6,2)	3,8
	Nuiz	10	03	7		7,2 (0,2)	3,0
TU 50	Standard	5	85	3	10	8,2 (7,2)	8
10 30	Staridard	10		7	_	0,2 (7,2)	ŭ
	Lang	5	85	3		4,2(3,2)	8
	9	10		7		.,_ (-,_ ,	_
	Kurz	5	110	3	-	14,6 (19,6)	
		10		7			10,4
		20 (2)	130	14		9,6 (14,6)	
		5	100	3	_	()	_
TU 60	Standard	10	405	7	20	9,6 (9,6)	8
		20	105	14			
	1	5	100	7		0 (05)	0
	Lang	10 20	105	14		9 (8,5)	8
		10	105	7		13 (14)	11
	Kurz	20	105 (³)	14		13 (14)	4
		10		7	_	13 (14)	4
TU 86	Standard	20	105	14	- 20	12 (14)	11
		10		7		13 (14)	
	Lang	20	105	14		12 (14)	11
TU100	Standard	20	150	14	20	22 (19)	20
TU130	Standard	25	160	18	20	18 (23)	20
10130	Standard	23	100	10	20	10 (23)	20

Hinweise (1) In (1) angegebene Werte gelten bei Verwendung von zwei Führungsschlitten.


- (2) Nach Abschalten des Vorreferenz-Signals wird das CCW-Limit vor dem Abschalten eingeschaltet.
- (3) Bei Führungsschienenlängen von 1 390mm und 1 590mm, beträgt diese Länge 110 mm.
- (4) Bei Führungsschienenlängen von 1 390mm und 1 590mm, beträgt diese Länge 7 (9) mm.

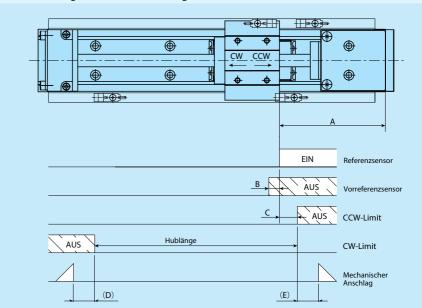
- 1. Die Montage eines Sensors wird unter Verwendung der entsprechenden Produktbezeichnung angegeben.
- 2. Die Ausführungen der jeweiligen Sensoren finden Sie im Abschnitt Sensorausführung unter Allgemeine Erläuterung.
- 3. Die Werte in der Tabelle gelten nicht für Tische mit Faltenbälgen.
- 4. Für Tische mit C-Lube, siehe Tabelle 15.3.

II-52

Finheit: mm

Tabelle 15.2 Sensor-Zeittafel (Ausführung mit Motorumlenkung)

*Bei Tischen mit Motorumlenkung verlaufen die CW- und CCW-Bewegungen des Schlittens entgegengesetzt zu den Bewegungen der Tische ohne Motorumlenkung.


Größe	Länge des Führungsschlittens	Spindel- steigung	A	В	С	D(1)	E	
	V	4	45	2		75(55)	4.5	
	Kurz	8	45	6		7,5 (5,5)	4,5	
TU 40	Standard	4	45	2	10	10,5 (8,5)	8	
10 40	Staridard	8	45	6]	10,5 (0,5)	0	
	Lang	4	45	2	_	4,5 (7,5)	8	
	Larig	8	15	6		1,5 (7,5)		
	Kurz	5	45	3		7,2 (6,2)	3,8	
		10		7	-	7,2 (3,2)	5,0	
TU 50	Standard	5	45	3	10	8,2 (7,2)	8	
		10	-	7		5,2 (1,2)	-	
	Lang	5	45	3	-	4,2 (3,2)	8	
		10		7		, , , ,		
	Kurz	5	64	3	-	14,6 (19,6)		
		10		7			10,4	
		20 (2)	84	14	-	9,6 (14,6)		
TII. 60	C	5		3	20	0.5(.0.5)		
TU 60	Standard	10	59	7	20	9,6 (9,6)	8	
		20		14	-			
	Lame	5	59	7	-	0 (05)	8	
	Lang	10 20	59	14	_	9 (8,5)	8	
		10		7		13 (14)	11	
	Kurz	20	62	14	-	12 (14)	4	
		10		7	-	13 (14)	4	
TU 86	Standard	20	62	14	- 20	12 (14)	11	
		10		7		13 (14)		
	Lang	20	62	14	-	12 (14)	11	
	20.19	20		1.1		12 (11)		

Hinweise (1) In (1) angegebene Werte gelten bei Verwendung von zwei Führungsschlitten.

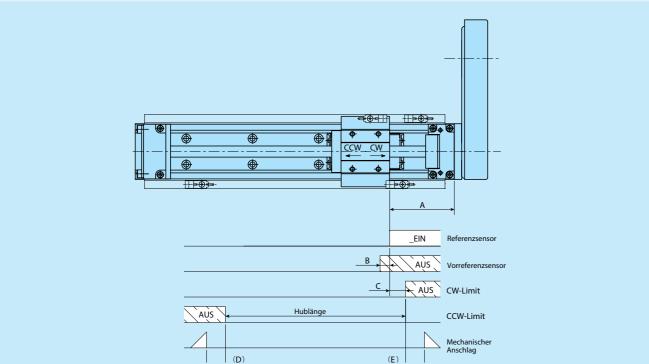
(2) Nach Abschalten des Vorreferenz-Signals wird das CCW-Limit vor dem Abschalten eingeschaltet.

- 1. Die Montage eines Sensors wird unter Verwendung der entsprechenden Produktbezeichnung angegeben.
- 2. Die Ausführungen der jeweiligen Sensoren finden Sie im Abschnitt Sensorausführung unter Allgemeine Erläuterung.
- 3. Die Werte in der Tabelle gelten nicht für Tische mit Faltenbälgen.
- 4. Für Tische mit C-Lube, siehe Tabelle 15.4.

Tabelle 15.3 Sensor-Zeittafel (Ausführung ohne Motorumlenkung, mit C-Lube)

							Einheit: mm
Modell und Größe	Länge des Führungsschlittens	Spindel- steigung	A	В	С	D(1)	E
una dioise		4		2			
	Kurz	8	100	6		7,5 (5,5)	9
		4		2		(>	_
TU 40	Standard	8	100	6	10	5,5 (8,5)	9
		4	100	2		0.5 (7.5)	0
	Lang	8	100	6		9,5 (7,5)	9
	Kurz	5	100	3		72(62)	8
	Kurz	10	100	7		7,2 (6,2)	8
TU 50	Standard	5	100	3	10	8,2 (7,2)	8
10 30	Standard	10	100	7	10	0,2 (7,2)	0
	Lang	5	100	3		9,2 (8,2)	8
	Larig	10	100	7		J,Z (0,Z)	o o
	Kurz	5	120	3			
		10		7		9,6 (9,6)	5,4
		20 (2)	140	14			
		5	100	3		4,6 (9,6)	8
TU 60	Standard	10		7	20		
		20	115	14		9,6 (4,6)	5,4
		5	100	3		4 (9)	
	Lang	10		7			8
		20	105	14		4 (4)	
	Kurz	10	130	7		8 (14)	19
		20		14		7 (14)	9
TU 86	Standard	10	105	7	20	13 (9)	- 11
		20		14		12 (9)	
	Lang	10	105	7		8 (9)	- 11
TU100	Chandand	20	150	14	20	7 (9)	20
TU100	Standard	20	150	14	20	17 (14)	20
TU130	Standard	25	160	18	20	18 (23)	20

Hinweise (1) In (1) angegebene Werte gelten bei Verwendung von zwei Führungsschlitten


(2) Nach Abschalten des Vorreferenz-Signals wird das CCW-Limit vor dem Abschalten eingeschaltet.

Anmerkungen

- 1. Die Montage eines Sensors wird unter Verwendung der entsprechenden Produktbezeichnung angegeben.
- 2. Die Ausführungen der jeweiligen Sensoren finden Sie im Abschnitt Sensorausführung unter Allgemeine Erläuterung.
- 3. Die Werte in der Tabelle gelten nicht für Tische mit Faltenbälgen.

Anmerkungen

Tabelle 15.4 Sensor-Zeittafel (Ausführung mit Motorumlenkung, mit C-Lube)

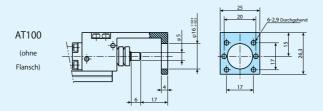
*Bei Tischen mit Motorumlenkung verlaufen die CW- und CCW-Bewegungen des Schlittens entgegengesetzt zu den Bewegungen der Tische ohne Motorumlenkung.

							Limiter. iiiii
Modell und Größe	Länge des Führungsschlittens	Spindel- steigung	А	В	С	D(1)	E
		4		2		()	_
	Kurz	8	- 60	6	-	7,5 (5,5)	9
TIL 10	6. 1.1	4		2	1	5.5 (0.5)	
TU 40	Standard	8	- 60	6	- 10	5,5 (8,5)	9
	Lama	4	60	2		0.5(7.5)	9
	Lang	8	- 60	6		9,5 (7,5)	9
	Kurz	5	60	3		7,2(6,2)	8
	Kuiz	10	00	7		7,2(0,2)	0
TU 50	Standard	5	- 60	3	10	8,2 (7,2)	8
10 30	Staridard	10	00	7		0,2 (7,2)	0
	Lang	5	60	3		9,2 (8,2)	8
	Lung	10	00	7		7,2 (0,2)	
	Kurz	5	75	3		8,6 (8,6)	6,4
		10		7			
		20 (2)	94	14		9,6 (9,6)	5,4
		5	60	3	-	8,6 (3,6)	9
TU 60	Standard	10		7	20		
		20	69	14	-	9,6 (4,6)	5,4
		5	60	3	-	8 (3)	9
	Lang	10		7	-		
		20	59	14		4 (4)	8
	Kurz	10	90	7	-	10 (6)	22
		20		14		9 (6)	12
TU 86	Standard	10	60	7	20	10 (6)	9
		20		14		9 (6)	
	Lang	10	60	7		5 (6)	9
	Lang	20		14		4 (6)	

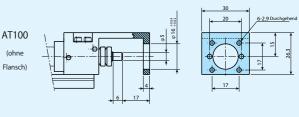
Hinweise (1) In (1) angegebene Werte gelten bei Verwendung von zwei Führungsschlitten.

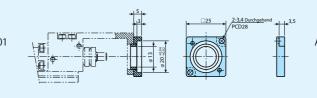
 $\begin{tabular}{ll} (2) Nach Abschalten des Vorreferenz-Signals wird das CCW-Limit vor dem Abschalten eingeschaltet. \end{tabular}$

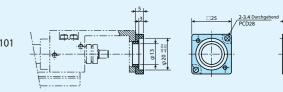
Anmerkungen

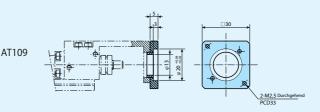

- 1. Die Montage eines Sensors wird unter Verwendung der entsprechenden Produktbezeichnung angegeben.
- 2. Die Ausführungen der jeweiligen Sensoren finden Sie im Abschnitt Sensorausführung unter Allgemeine Erläuterung.
- 3. Die Werte in der Tabelle gelten nicht für Tische mit Faltenbälgen.

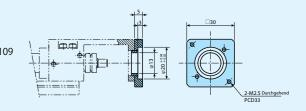
Abmessungen des Motorflanschs

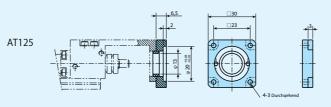

■ Ausführung ohne Motorumlenkung

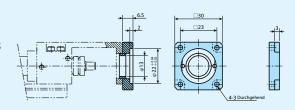

Anmerkung: Den Motorflansch für NEMA finden ab Seite III-31ff.

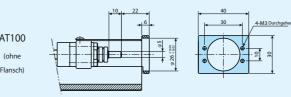

TU25

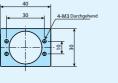


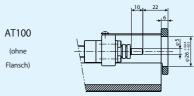

TU30

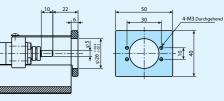


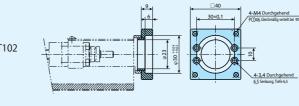


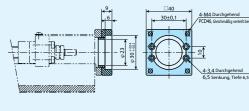


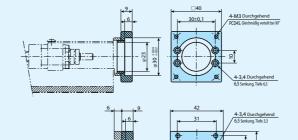


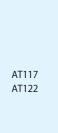


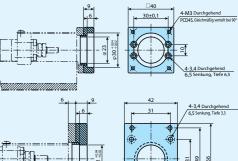



TU40

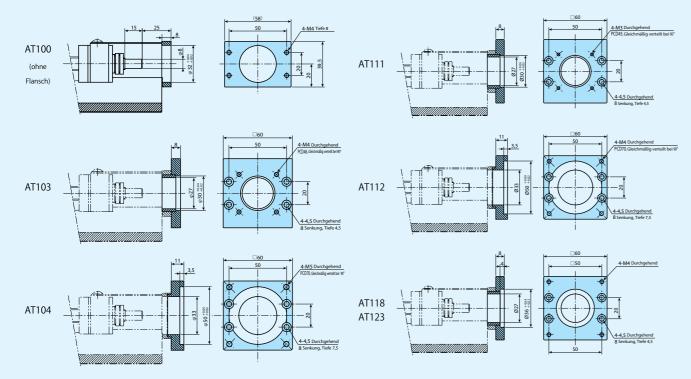




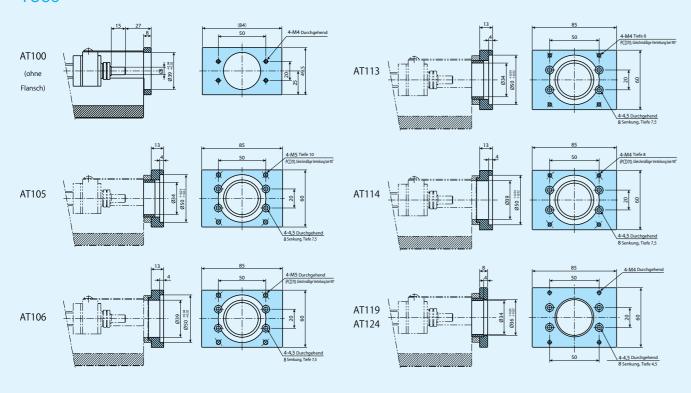




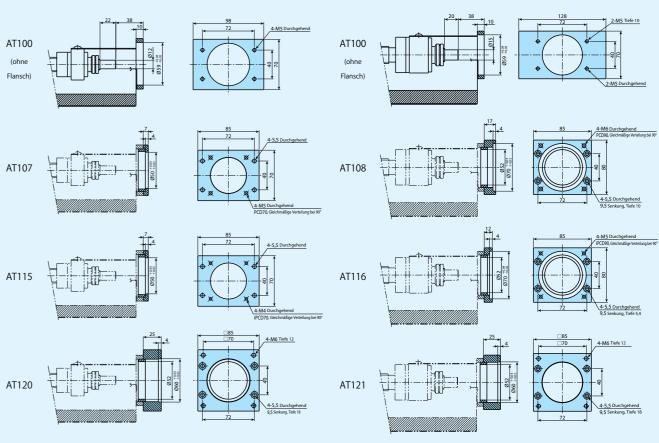
TU50


AT102

AT110



AT117 AT122

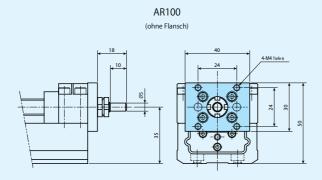

TU60

TU86

TU100

TU130

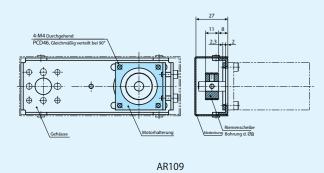
Į


■ Ausführung mit Motorumlenkung

TU40

(ohne Flansch)

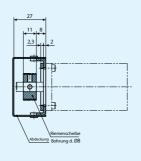
AR100

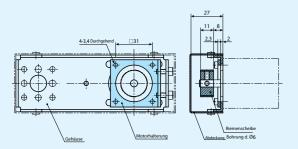

TU50

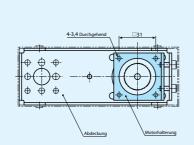
AR105

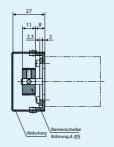
AR110

TU40, TU50

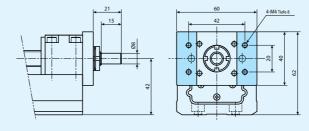


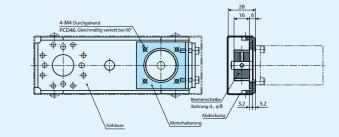

AR101


4-M3 Durchgehend
PCD45, Gleichmäßig verteilt bei 90

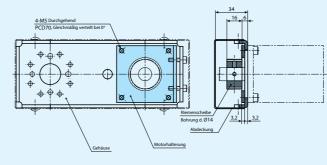

Gehäuse

Motorhalterung



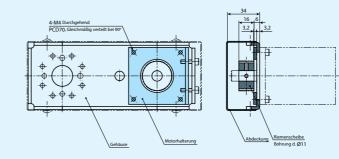


TU60

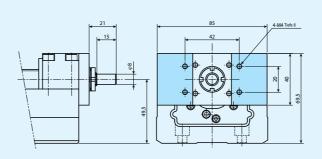


AR106

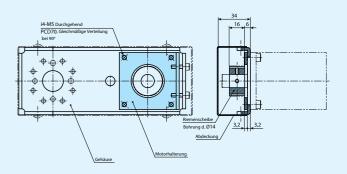
AR102


AR103

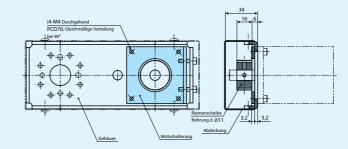
4-M3 Durchgehend
PCD45, Gleichmäßig vertellt bei 90°


Riemenscheibe
Rohrung d., 08
Abdeckung

AR107



TU86


AR100 (ohne Flansch)

AR104

AR108

1N=0,102kgf=0,2248lbs. 1mm=0,03937 Zoll

11-59

Beispiel einer Kombination

Beim Präzisionspositioniertisch TU ermöglicht das Verwenden eines XY-Verbindungsstücks die Konfiguration verschiedener Kombinationen mit zwei Achsen. Das aus einer leichten Aluminiumlegierung gefertigte XY-Verbindungsstück kann auf einen Standardschlitten Flanschmodell montiert werden. In Tabelle 16 werden verschiedene XY-Verbindungsstück-Modelle aufgeführt. Bei Interesse geben Sie bitte die in der Tabelle gelistete Modellnummer des gewünschten Verbindungstückes an.

Tabelle 16 Konfiguration von zwei Achsen und XY-Verbindungsstück

II-61

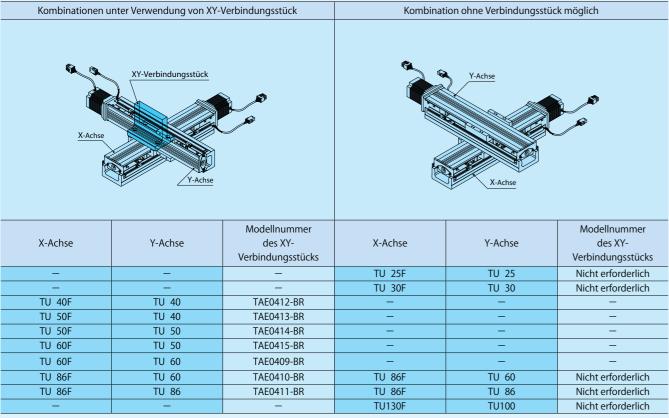
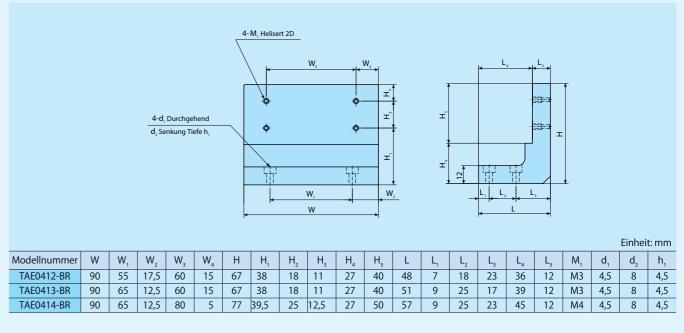
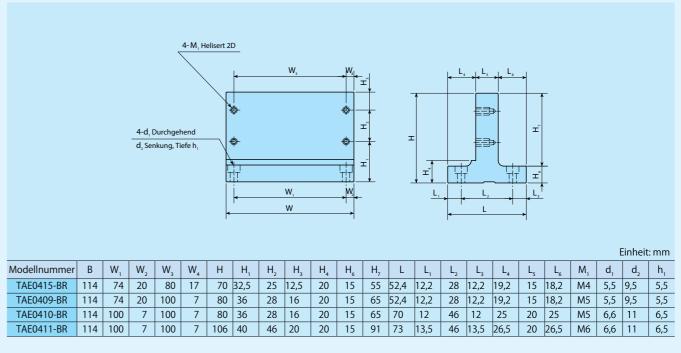
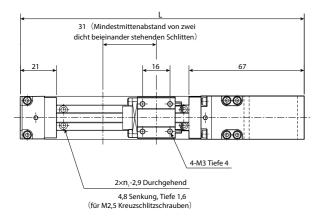
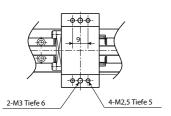
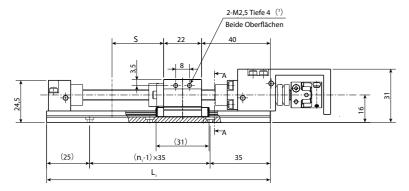
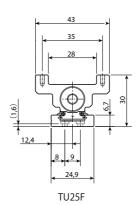


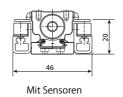
Tabelle 17.1 Abmessungen des XY-Verbindungsstücks


Tabelle 17.2 Abmessungen des XY-Verbindungsstücks

TU25

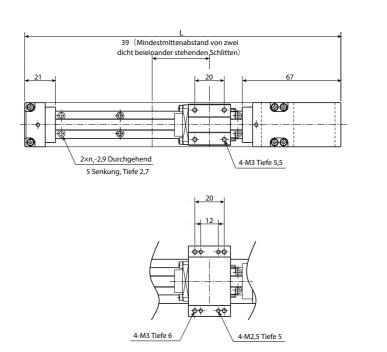


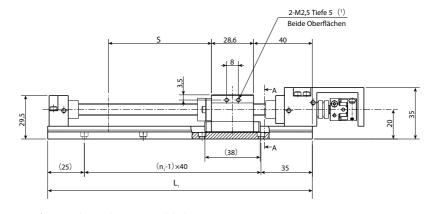


24 16 16 12,4 12,4 12,4 TU25S

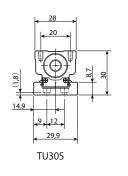
A-A Querschnitt

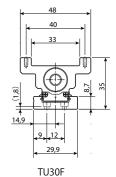
Hinweis (1) TU25F besitzt keine Gewindebohrung.

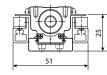

Abmessungen Einheit: mm


Tibilitessarigen						Ellinicit. Illini
Modell und Größe	Länge der Führungsschiene L ₁	Gesamtlänge L	Hublänge S (¹)	n,	Masse des Führungsschlittens kg	Masse (²) kg
	130	165	30(-)	3		0,31
TU25S	165	200	65 (45)	4	0,05	0,34
	200	235	100 (80)	5		0,38
	130	165	30(-)	3		0,33
TU25F	165	200	65 (45)	4	0,07	0,36
	200	235	100 (80)	5		0,40

Hinweise (1) Der Wert gibt die mögliche Hublänge bei montierten Endsensoren an. Der Wert in () gibt die Abmessung für zwei dicht beieinander stehende Führungsschlitten an.


Anmerkung: Führungsschiene und Gehäuse bestehen aus Edelstahl.


TU30

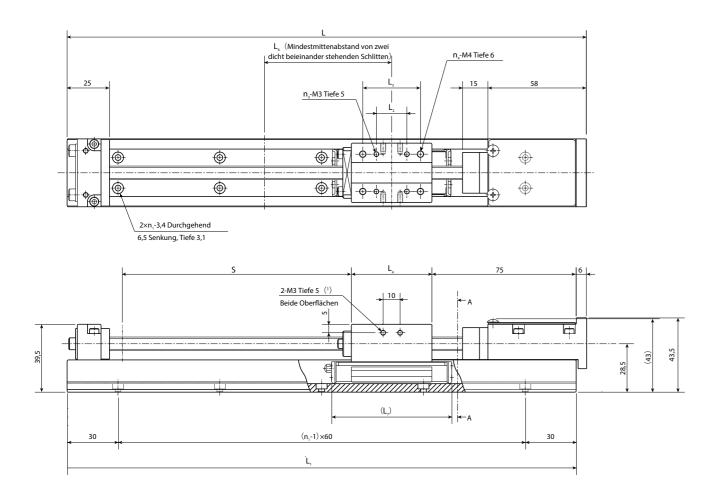


A-A Querschnitt

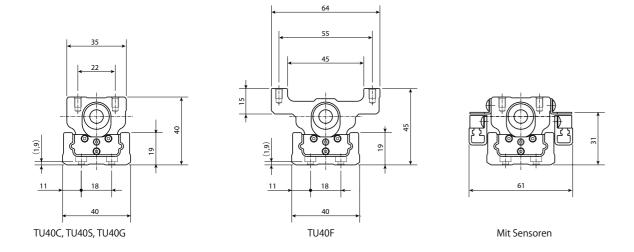
Mit Sensoren

Hinweis (1) TU30F besitzt keine Gewindebohrung.

Abmessungen Einheit: mm


Abiliessurigeri						Ellilleit, Illill
Modell und Größe	Länge der Führungsschiene L ₁	Gesamtlänge L	Hublänge S (¹)	n,	Masse des Führungsschlittens kg	Masse (²) kg
	140	175	30(-)	3		0,49
	180	215	70 (45)	4		0,56
TU30S	220	255	110(85)	5	0,09	0,63
10303	260	295	150 (125)	6	0,09	0,70
	300	335	190 (165)	7		0,77
	340	375	230 (205)	8		0,84
	140	175	30(-)	3		0,52
	180	215	70 (45)	4		0,59
TU30F	220	255	110(85)	5	0,12	0,66
1030F	260	295	150 (125)	6	0,12	0,73
	300	335	190 (165)	7		0,80
	340	375	230 (205)	8		0,87

Hinweise (¹) Der Wert gibt die mögliche Hublänge bei montierten Endsensoren an. Der Wert in () gibt die Abmessung für zwei dicht beieinander stehende Führungsschlitten an.


(²) Der Wert gibt die Masse des gesamten Tisches mit einem Führungsschlitten an. Anmerkung: Führungsschiene und Gehäuse bestehen aus Edelstahl.

⁽²⁾ Der Wert gibt die Masse des gesamten Tisches mit einem Führungsschlitten an.

TU40

A-A Querschnitt

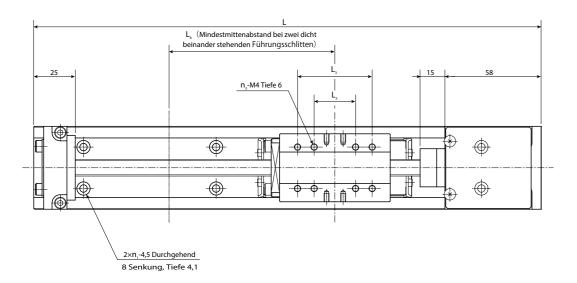
Hinweis (1) TU40F besitzt keine Gewindebohrung.

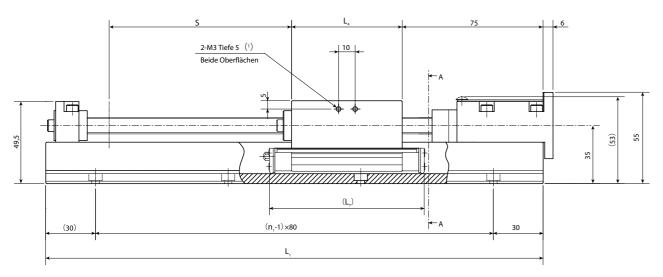
Abmessungen des Führungsschlittens

Einheit: mm

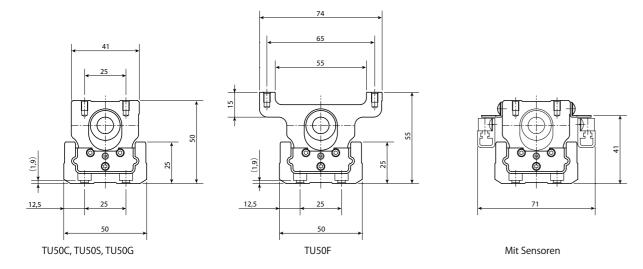
Modell und Größe	L ₂	L ₃	L ₄	L ₆	L,	n ₃	n ₄	Masse kg
TU40C	_	_	19,5	45	43	_	2	0,1
TU40S	-	18	31,5	60	55	_	4	0,2
TU40G	18	34	47,5	75	71	4	4	0,3
TU40F	_	18	31,5	60	55	_	4	0,3

Abmessungen der Führungsschiene


Einheit: mm


Länge der	Gesamtlänge			Hublänge S(1)			Masse	(2) kg	
Führungsschiene L ₁	L	n,	TU40C	TU40S TU40F	TU40G	TU40C	TU40S	TU40G	TU40F
180	186	3	45(-)	30(-)	- (-)	0,9	1,0	_	1,1
240	246	4	105 (70)	90 (40)	80(-)	1,1	1,2	1,3	1,3
300	306	5	165 (130)	150 (100)	140 (70)	1,2	1,3	1,4	1,4
360	366	6	225 (190)	210 (160)	200 (130)	1,4	1,5	1,6	1,6
420	426	7	285 (250)	270 (220)	260 (190)	1,6	1,7	1,8	1,8

Hinweise (1) Der Wert gibt die maximale Hublänge bei montierten Endsensoren an. Der Wert in (1) gibt die Abmessung für zwei dicht beieinander stehende Führungsschlitten an.


(2) Der Wert gibt die Masse des gesamten Tisches mit einem Führungsschlitten an.

TU50

A-A Querschnitt

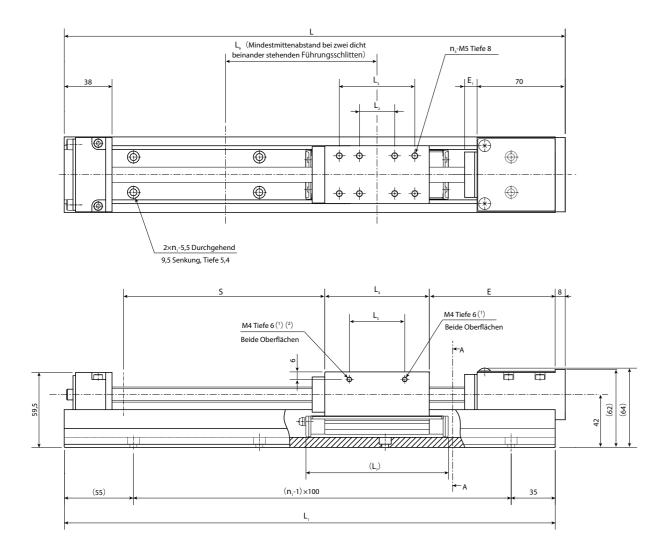
Hinweis (1) Für TU50F wird keine Gewindebohrung vorbereitet.

Abmessungen des Führungsschlittens

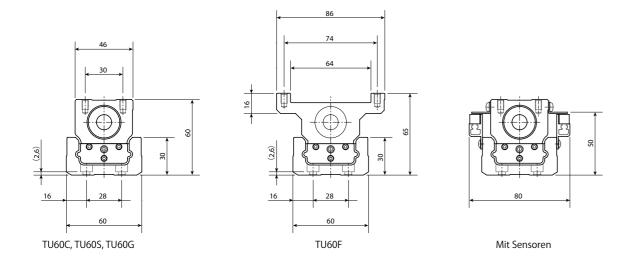
Einheit: mm

Modell und Größe	L ₂	L ₃	$L_{_{4}}$	L ₆	L,	n ₃	Masse kg
TU50C	_	-	23,8	55	51	2	0,2
TU50S	25	-	42,8	75	70	4	0,4
TU50G	25	45	66,8	100	94	8	0,7
TU50F	25	_	42,8	75	70	4	0,5

Abmessungen der Führungsschiene


Einheit: mm

Tibili essaingen der i d	nessangen der i din angissemene												
Länge der	Gesamt-			Hublänge S(1)		Masse (2) kg							
Führungs- schiene L _ı	länge L	n,	TU50C	TU50S TU50F	TU50G	TU50C	TU50S	TU50G	TU50F				
220	226	3	80(-)	60(-)	- (-)	1,6	1,8	_	1,9				
300	306	4	160 (115)	140 (75)	120(-)	1,9	2,1	2,4	2,2				
380	386	5	240 (195)	220 (155)	200 (110)	2,3	2,5	2,8	2,6				
460	466	6	320 (275)	300 (235)	280 (190)	2,7	2,9	3,2	3,0				
540	546	7	400 (355)	380 (315)	360 (270)	3,1	3,3	3,6	3,4				
620	626	8	480 (435)	460 (395)	440 (350)	3,5	3,7	3,9	3,8				
700	706	9	560 (515)	540 (475)	520 (430)	3,8	4,0	4,3	4,1				
(1) D 144				- 1	144	. 11 41	· · ·						


Hinweise (1) Der Wert gibt die maximale Hublänge bei montierten Endsensoren an. Der Wert in (1) gibt die Abmessungen für zwei dicht beieinander stehende Führungsschlitten an.

⁽²⁾ Der Wert gibt die Masse des gesamten Tisches mit einem Führungsschlitten an.

TU60

A-A Querschnitt

Hinweise (1) Für TU60FC, TU60F, TU60FG wird keine Gewindebohrung vorbereitet. (2) TU60C ist Ø3 Tiefe 2.

<Spindelsteigung 5mm, 10mm>

Abmessungen des Führungsschlittens

Einheit: mm

Modell und Größe	L ₂	L ₃	L ₄	L _s	L ₆	L ₇	n ₃	E	E,	Masse kg
TU60C	_	_	27,4	17,4	65	58	2	90	15	0,3
TU60S	28	_	52,4	18	90	83	4	80	10	0,6
TU60G	28	60	83	44	120,5	113	8	80	10	1,0
TU60FC	_	-	27,4	-	65	58	2	90	15	0,4
TU60F	28	_	52,4	_	90	83	4	80	10	0,8
TU60FG	28	60	83	_	120,5	113	8	80	10	1,3

Abmessungen der Führungsschiene

Einheit: mm

Länge der	Gesamt-			Hublänge S(1)		Masse (²) kg					
Führungs- schiene L ₁	länge L	n,	TU60C TU60FC	TU60S TU60F	TU60G TU60FG	TU60C	TU60S	TU60G	TU60FC	TU60F	TU60FG
290	298	3	110 (50)	100(-)	70(-)	3,0	3,3	3,6	3,1	3,5	3,9
390	398	4	210 (150)	200 (120)	170 (60)	3,7	4,0	4,4	3,8	4,2	4,7
490	498	5	310 (250)	300 (220)	270 (160)	4,5	4,8	5,1	4,6	4,9	5,4
590	598	6	410 (350)	400 (320)	370 (260)	5,2	5,5	5,8	5,3	5,7	6,1
690	698	7	510 (450)	500 (420)	470 (360)	6,0	6,2	6,6	6,1	6,4	6,9
790	798	8	610 (550)	600 (520)	570 (460)	6,7	7,0	7,3	6,8	7,2	7,6
990	998	10	810 (750)	800 (720)	770 (660)	8,3	8,6	9,0	8,4	8,7	9,1
1190	1198	12	1 010 (950)	1 000 (920)	970 (860)	9,8	10,1	10,5	9,9	10,2	10,6

Hinweise (1) Der Wert gibt die maximale Hublänge bei montierten Endsensoren an. Der Wert in (1) gibt die Abmessungen für zwei dicht beieinander stehende Führungsschlitten an.

(2) Der Wert gibt die Masse des gesamten Tisches mit einem Führungsschlitten an.

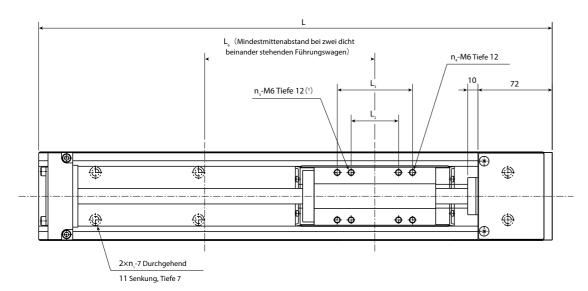
<Spindelsteigung 20mm>

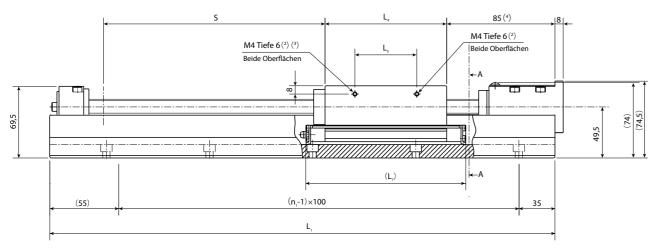
Abmessungen des Führungsschlittens

Einheit: mm

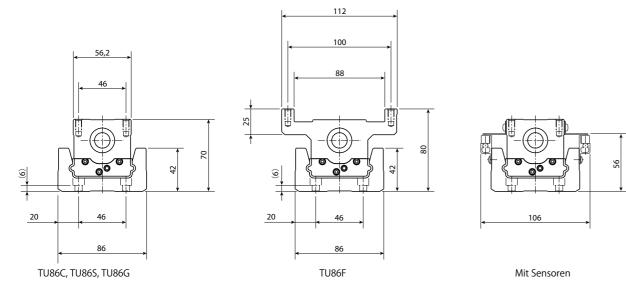
Modell und Größe	L ₂	L ₃	L ₄	L _s	L ₆	L,	n ₃	E	Ε,	Masse kg
TU60C	_	_	27,4	17,4	65	58	2	110	15	0,3
TU60S	28	_	52,4	18	90	83	4	85	15	0,6
TU60G	28	60	83	44	120,5	113	8	85	15	1,0
TU60FC	_	-	27,4	_	65	58	2	110	15	0,4
TU60F	28	_	52,4	_	90	83	4	85	15	0,8
TU60FG	28	60	83	_	120,5	113	8	85	15	1,3

Abmessungen der Führungsschiene


Einheit: mm


Länge der Gesamt-			Hublänge S(1)			Masse (2) kg						
Führungs- schiene L ₁	schiene L	n,	TU60C TU60FC	TU60S TU60F	TU60G TU60FG	TU60C	TU60S	TU60G	TU60FC	TU60F	TU60FG	
290	298	3	95(-)	95(-)	65(-)	3,1	3,4	3,7	3,2	3,6	4,0	
390	398	4	195 (135)	195 (115)	165(-)	3,8	4,1	4,5	3,9	4,3	4,8	
490	498	5	295 (235)	295 (215)	265 (155)	4,6	4,9	5,2	4,7	5,0	5,5	
590	598	6	395 (335)	395 (315)	365 (255)	5,3	5,6	5,9	5,4	5,8	6,2	
690	698	7	495 (435)	495 (415)	465 (355)	6,1	6,3	6,7	6,2	6,5	7,0	
790	798	8	595 (535)	595 (515)	565 (455)	6,8	7,1	7,4	6,9	7,3	7,7	

Hinweise (¹) Der Wert gibt die maximale Hublänge bei montierten Endsensoren an. Der Wert in () gibt die Abmessungen für zwei dicht beieinander stehende Führungsschlitten an.


(2) Der Wert gibt die Masse des gesamten Tisches mit einem Führungsschlitten an.

TU86

A-A Querschnitt

Hinweise (1) TU86F ist M5 Tiefe 12.

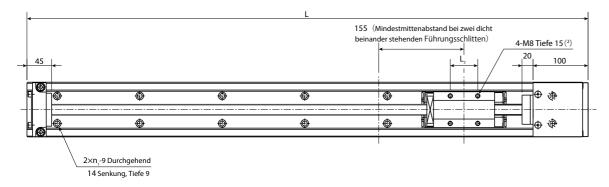
- (2) Für TU86FC, TU86F, TU86FG wird keine Gewindebohrung vorbereitet.
- (3) TU86C ist Ø3 Tiefe 2.
- (4) Wenn die Führungsschienenlänge bei TU86C und TU86FC 1 390 oder 1 590 beträgt, ist die Höhe 90.

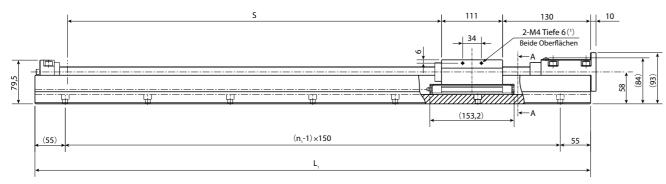
Abmessungen des Führungsschlittens

Einheit: mm

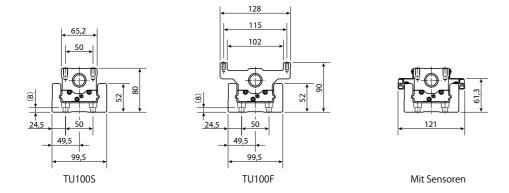
Modell und Größe	L ₂	L ₃	L ₄	L _s	L ₆	L,	n ₃	n ₄	Masse kg
TU86C	_	_	43	30	90	80	2	_	0,7
TU86S	46	_	93	63	140	130	4	_	1,7
TU86G	46	73	118	60	165	155	4	4	2,2
TU86FC	_	_	43	_	90	80	2	_	1,1
TU86F	28	46	93	_	140	130	4	4	2,3
TU86FG	46	73	118	_	165	155	4	4	3,0

Abmessungen der Führungsschiene


Einheit: mm


Länge der	Gesamt-	Gesamt-		Hublänge S(1)		Masse (2) kg					
Führungs- schiene L L ₁	n,	TU86C TU86FC	TU86S TU86F	TU86G TU86FG	TU86C	TU86S	TU86G	TU86FC	TU86F	TU86FG	
490	498	5	300(220)	250(120)	225 (70)	9,9	10,9	11,4	10,3	11,5	12,2
590	598	6	400(320)	350(220)	325(170)	10,8	11,7	12,2	11,2	12,4	13,0
690	698	7	500(420)	450(320)	425(270)	12,3	13,2	13,8	12,7	13,9	14,6
790	798	8	600(520)	550(420)	525(370)	13,8	14,7	15,3	14,2	15,4	16,1
890	898	9	700(620)	650(520)	625(470)	15,0	15,9	16,4	15,4	16,6	17,2
990	998	10	800(720)	750(620)	725(570)	16,5	17,4	17,9	16,9	18,1	18,7
1090	1 098	11	900(820)	850(720)	825(670)	18,0	18,9	19,4	18,4	19,6	20,2
1190	1 198	12	1 000(920)	950(820)	925(770)	19,5	20,4	21,0	19,9	21,1	21,8
1390	1 398	14	1 200 (1 120)	1 150 (1 020)	1 125(970)	24,5	25,4	25,9	24,9	26,0	26,7
1590	1 598	16	1 400 (1 320)	1 350 (1 220)	1 325 (1 170)	27,8	28,7	29,2	28,2	29,3	30,0

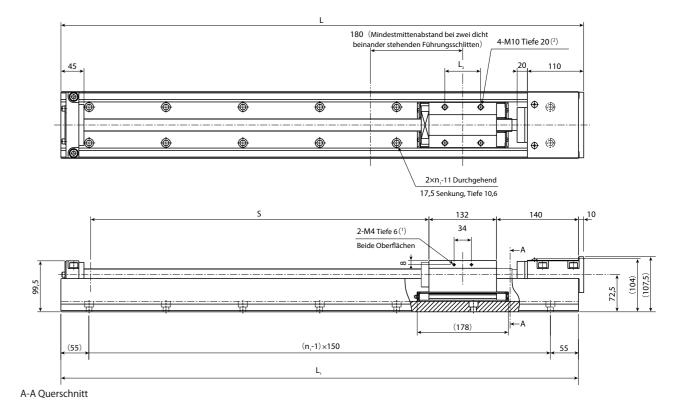
Hinweise (1) Der Wert gibt die maximale Hublänge bei montierten Endsensoren an. Der Wert in (1) gibt die Abmessungen für zwei dicht beieinander stehende Führungsschlitten an.

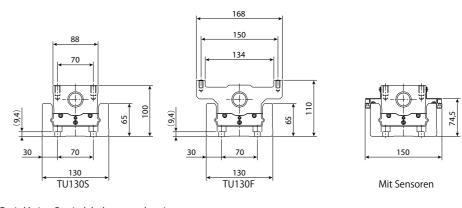

⁽²⁾ Der Wert gibt die Masse des gesamten Tisches mit einem Führungsschlitten an.

TU100

A-A Querschnitt

Hinweis (1) Für TU100F wird keine Gewindebohrung vorbereitet.


(2) TU100F ist M6 Tiefe 12.


Anmerkung: Die Führungsschiene ist mit Gewindebohrungen für M12-Schrauben für den Transport ausgestattet.

Abmessungen							Einheit: mm
Modell und Größe	Länge der Führungsschiene L ₁	Gesamt- länge L	Hublänge S (¹)	n,	L ₂	Masse des Führungsschlittens kg	Masse (²) kg
	1 010	1 020	690(550)	7		2,6	28,0
TU100S	1 160	1 170	840(700)	8	50		31,6
	1 310	1 320	990(850)	9			35,1
	1 460	1 470	1 140 (1 000)	10			38,8
	1 010	1 020	690(550)	7			29,1
TU100F	1 160	1 170	840(700)	8	46	3,7	32,7
10100F	1 310	1 320	990(850)	9	70	5,7	36,2
	1 460	1 470	1 140 (1 000)	10			39,9

Hinweise (1) Der Wert gibt die maximale Hublänge bei montierten Endsensoren an. Der Wert in (1) gibt die Abmessungen für zwei dicht beieinander stehende Führungsschlitten an.

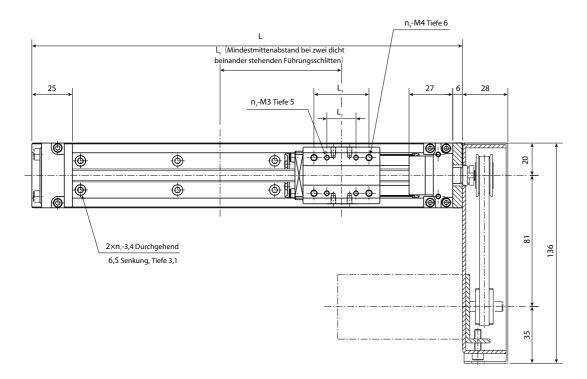
TU130

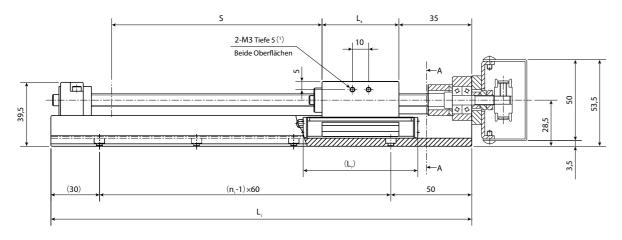
Hinweis (1) Für TU130F wird keine Gewindebohrung vorbereitet.

(2) TU130F ist M8 Tiefe 15.

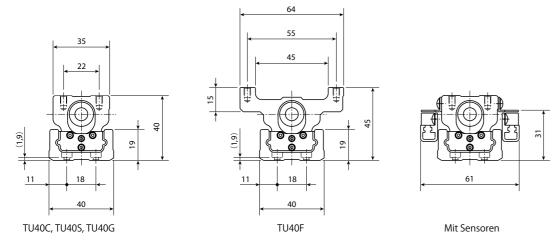
Anmerkung: Die Führungsschiene ist mit Gewindebohrungen für M12-Schrauben für den Transport ausgestattet.

Abmessungen							Einheit: mm
Modell und Größe	Länge der Führungsschiene L ₁	Gesamt- länge L	Hublänge S (¹)	n,	L ₂	Masse des Führungsschlittens kg	Masse (²) kg
	1 010	1 020	660(490)	7			45,2
	1 160	1 170	810(640)	8		5,4	50,6
TU130S	1 310	1 320	960(790)	9	70		56,2
	1 460	1 470	1 110(940)	10			61,8
	1 610	1 620	1 260 (1 090)	11			67,3
	1 010	1 020	660(490)	7			47,6
	1 160	1 170	810(640)	8			53,0
TU130F	1 310	1 320	960(790)	9	50	7,8	58,6
	1 460	1 470	1 110(940)	10			64,2
	1 610	1 620	1 260 (1 090)	11			69,7


Hinweise (¹) Der Wert gibt die maximale Hublänge bei montierten Endsensoren an. Der Wert in () gibt die Abmessungen für zwei dicht beieinander stehende Führungsschlitten an.


1N=0,102kgf=0,2248lbs. 1mm=0,03937 Zoll

⁽²⁾ Der Wert gibt die Masse des gesamten Tisches mit einem Führungsschlitten an.


⁽²⁾ Der Wert gibt die Masse des gesamten Tisches mit einem Führungsschlitten an.

TU40 Ausführung mit Motorumlenkung

A-A Querschnitt

Hinweis (¹) Für TU40F wird keine Gewindebohrung vorbereitet.

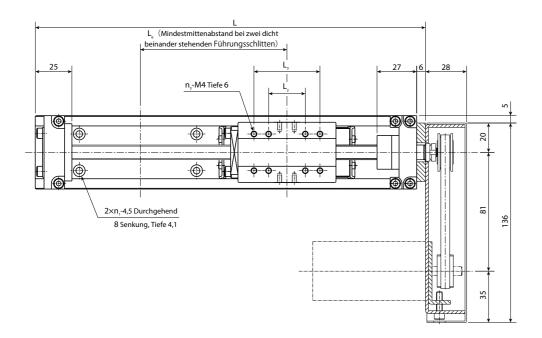
Anmerkung: Teile für die Motorbefestigung sind beigefügt. Diese Abbildung zeigt den fertigen Zustand, nachdem der Motorflansch durch den Kunden montiert wurde.

Abmessungen des Führungsschlittens

Einheit: mm

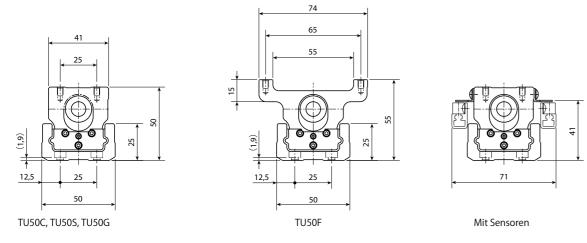
Modell und Größe	L ₂	L ₃	L ₄	L ₆	L,	n ₃	n ₄	Masse kg
TU40C	_	_	19,5	45	43	_	2	0,1
TU40S	_	18	31,5	60	55	_	4	0,2
TU40G	18	34	47,5	75	71	4	4	0,3
TU40F	_	18	31,5	60	55	_	4	0,3

Abmessungen der Führungsschiene


Einheit: mm

		_									
	Führungs-	Gesamt-			Hublänge S(1)		Masse (2) kg				
		länge L	n,	TU40C	TU40S TU40F	TU40G	TU40C	TU40S	TU40G	TU40F	
	140	146	2	45(-)	30(-)	- (-)	1,0	1,1	_	1,2	
	200	206	3	105 (70)	90 (40)	80(-)	1,2	1,3	1,4	1,4	
	260	266	4	165 (130)	150 (100)	140 (70)	1,4	1,5	1,6	1,6	
	320	326	5	225 (190)	210 (160)	200 (130)	1,6	1,7	1,8	1,8	
	380	386	6	285 (250)	270 (220)	260 (190)	1,8	1,9	2,0	2,0	

Hinweise (1) Der Wert gibt die maximale Hublänge bei montierten Endsensoren an. Der Wert in (1) gibt die Abmessungen für zwei dicht beieinander stehende Führungsschlitten an.


⁽²⁾ Der Wert gibt die Masse des gesamten Tisches mit einem Führungsschlitten an.

TU50 Ausführung mit Motorumlenkung

A-A Querschnitt

Hinweis (1) Für TU50F wird keine Gewindebohrung vorbereitet.

Anmerkung: Teile für die Motorbefestigung sind beigefügt. Diese Abbildung zeigt den fertigen Zustand, nachdem der Motorflansch durch den Kunden montiert wurde.

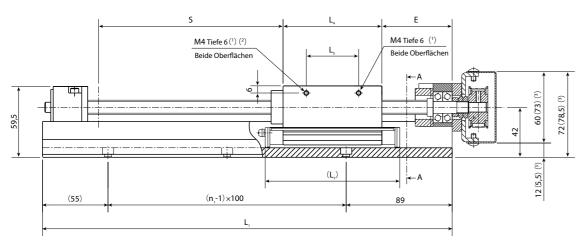
Abmessungen des Führungsschlittens

⊢i	n	h	ei [.]	t٠	m	n

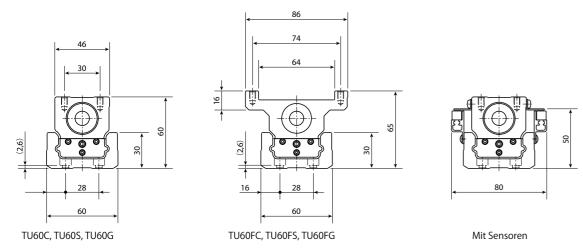
Modell und Größe	L ₂	L ₃	L ₄	L ₆	L,	n ₃	Masse kg
TU50C	_	_	23,8	55	51	2	0,2
TU50S	25	_	42,8	75	70	4	0,4
TU50G	25	45	66,8	100	94	8	0,7
TU50F	25	_	42,8	75	70	4	0,5

Abmessungen der Führungsschiene

Einheit: mm


änge der	Gesamt-			Hublänge S(1)		Masse (2) kg			
ührungs- schiene L ₁	länge L	n,	TU50C	TU50S TU50F	TU50G	TU50C	TU50S	TU50G	TU50F
180	186	2	80(-)	60(-)	- (-)	1,6	1,8	_	1,9
260	266	3	160 (115)	140 (75)	120(-)	1,9	2,1	2,4	2,2
340	346	4	240 (195)	220 (155)	200 (110)	2,3	2,5	2,8	2,6
420	426	5	320 (275)	300 (235)	280 (190)	2,7	2,9	3,2	3,0
500	506	6	400 (355)	380 (315)	360 (270)	3,1	3,3	3,6	3,4
580	586	7	480 (435)	460 (395)	440 (350)	3,5	3,7	3,9	3,8
660	666	8	560 (515)	540 (475)	520 (430)	3,8	4,0	4,3	4,1

Hinweise (1) Der Wert gibt die maximale Hublänge bei montierten Endsensoren an. Der Wert in (1) gibt die Abmessungen für zwei dicht beieinander stehende Führungsschlitten an.


⁽²⁾ Der Wert gibt die Masse des gesamten Tisches mit einem Führungsschlitten an.

TU60 Ausführung mit Motorumlenkung

A-A Querschnitt

Hinweise (1) Für TU60FC, TU60F, TU60FG wird keine Gewindebohrung vorbereitet.

- (²) TU60C ist Ø3 Tiefe 2.
- (3) Die Abmessungen in () gelten für die Motorflansch-Bezeichnungen AR103 und AR107.

Anmerkung: Teile für die Motorbefestigung sind beigefügt. Diese Abbildung zeigt den fertigen Zustand, nachdem der Motorflansch durch den Kunden montiert wurde.

<Spindelsteigung 5mm, 10mm>

Abmessungen des Führungsschlittens										
Modell und Größ	L ₂	L ₃	L ₄	L ₅	L ₆	L,	n ₃	E	Masse kg	
TU60C	_	_	27,4	17,4	65	58	2	44	0,3	
TU60S	28	_	52,4	18	90	83	4	39	0,6	
TU60G	28	60	83	44	120,5	113	8	39	1,0	
TU60FC	_	_	27,4	_	65	58	2	44	0,4	
TU60F	28	_	52,4	_	90	83	4	39	0,8	
TU60FG	28	60	83	_	120,5	113	8	39	1,3	

Abmessungen der Führungsschiene

hait.	

Länge der Führungs- schiene L ₁	Gesamt-		Hublänge S(1)			Masse (²) kg					
	länge L	n ₁	TU60C TU60FC	TU60S TU60F	TU60G TU60FG	TU60C	TU60S	TU60G	TU60FC	TU60F	TU60FG
244	252	2	110 (50)	95(-)	65(-)	3,6	3,9	_	3,7	4,1	_
344	352	3	210 (150)	195 (115)	165 (55)	4,3	4,6	5,0	4,4	4,8	5,3
444	452	4	310 (250)	295 (215)	265 (155)	5,1	5,4	5,7	5,2	5,5	6,0
544	552	5	410 (350)	395 (315)	365 (255)	5,8	6,1	6,4	5,9	6,3	6,7
644	652	6	510 (450)	495 (415)	465 (355)	6,6	6,8	7,2	6,7	7,0	7,5
744	752	7	610 (550)	595 (515)	565 (455)	7,5	7,6	7,9	7,6	7,8	8,2

Hinweise (¹) Der Wert gibt die maximale Hublänge bei montierten Endsensoren an. Der Wert in () gibt die Abmessungen für zwei dicht beieinander stehende Führungsschlitten an.

(2) Der Wert gibt die Masse des gesamten Tisches mit einem Führungsschlitten an.

<Spindelsteigung 20mm>

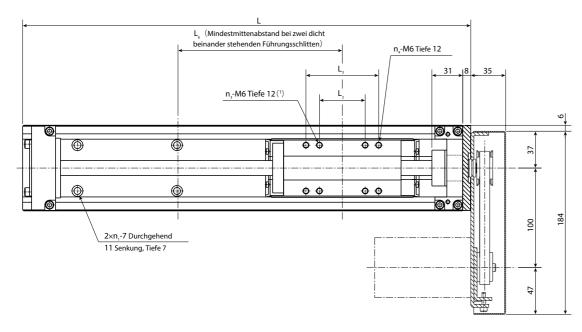
Abmessungen des Führungsschlittens

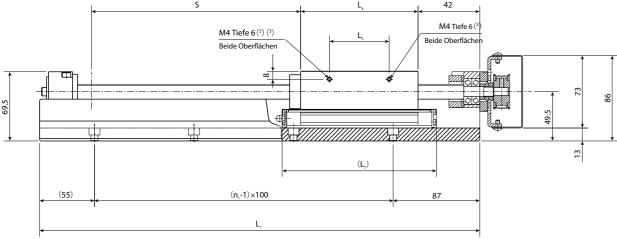
Einheit:	mm

Modell und Größe	L ₂	L ₃	L ₄	L _s	L ₆	L,	n ₃	E	Masse kg	
TU60C	_	_	27,4	17,4	65	58	2	64	0,3	
TU60S	28	_	52,4	18	90	83	4	39	0,6	
TU60G	28	60	83	44	120,5	113	8	39	1,0	
TU60FC	_	-	27,4	-	65	58	2	64	0,4	
TU60F	28	_	52,4	_	90	83	4	39	0,8	
TU60FG	28	60	83	_	120,5	113	8	39	1,3	

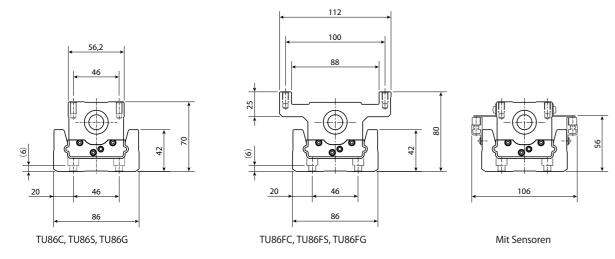
Abmessungen der Führungsschiene

Einheit: mm


II-80


in the standard and an arrangement and a standard a											
Länge der	Gesamt-	n,	Hublänge S(1)			Masse (²) kg					
Führungs-	länge L		TU60C TU60FC	TU60S TU60F	TU60G TU60FG	TU60C	TU60S	TU60G	TU60FC	TU60F	TU60FG
244	252	2	95(-)	95(-)	65(-)	3,7	4,0	_	3,8	4,2	_
344	352	3	195 (135)	195 (115)	165(-)	4,4	4,7	5,1	4,5	4,9	5,4
444	452	4	295 (235)	295 (215)	265 (155)	5,2	5,5	5,8	5,3	5,6	6,1
544	552	5	395 (335)	395 (315)	365 (255)	5,9	6,2	6,5	6,0	6,4	6,8
644	652	6	495 (435)	495 (415)	465 (355)	6,7	6,9	7,3	6,8	7,1	7,6
744	752	7	595 (535)	595 (515)	565 (455)	7,6	7,7	8,0	7,7	7,9	8,3

Hinweise (1) Der Wert gibt die maximale Hublänge bei montierten Endsensoren an. Der Wert in (1) gibt die Abmessungen für zwei dicht beieinander stehende Führungsschlitten an.


(2) Der Wert gibt die Masse des gesamten Tisches mit einem Führungsschlitten an.

TU86 Ausführung mit Motorumlenkung

A-A Querschnitt

Hinweise (1) TU86F ist M5 Tiefe 12.

(2) Für TU86FC, TU86F, TU86FG wird keine Gewindebohrung vorbereitet.

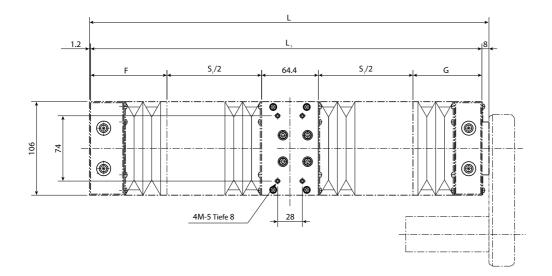
(3) TU86C ist Ø3 Tiefe 2.

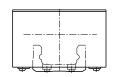
Anmerkung: Teile für die Motorbefestigung sind beigefügt. Diese Abbildung zeigt den fertigen Zustand, nachdem der Motorflansch durch den Kunden montiert wurde.

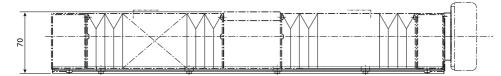
Abmessungen des Führungsschlittens

Modell und Größe	L ₂	L ₃	L ₄	L _s	L ₆	L ₇	n ₃	n ₄	Masse kg
TU86C	-	_	43	30	90	80	2	_	0,7
TU86S	46	_	93	63	140	130	4	_	1,7
TU86G	46	73	118	60	165	155	4	4	2,2
TU86FC	_	_	43	_	90	80	2	_	1,1
TU86F	28	46	93	_	140	130	4	4	2,3
TU86FG	46	73	118	-	165	155	4	4	3,0

Abmessungen der Führungsschiene


Einheit: mm


Länge der	JS- Gesamt- I			Hublänge S(1)		Masse (2) kg					
Führungs- schiene L ₁		n,	TU86C TU86FC	TU86S TU86F	TU86G TU86FG	TU86C	TU86S	TU86G	TU86FC	TU86F	TU86FG
442	450	4	295 (215)	245 (115)	220 (65)	10,3	11,3	11,8	10,7	11,9	12,6
542	550	5	395 (315)	345 (215)	320 (165)	11,2	12,1	12,6	11,6	12,8	13,4
642	650	6	495 (415)	445 (315)	420 (265)	12,7	13,6	14,2	13,1	14,3	15,0
742	750	7	595 (515)	545 (415)	520 (365)	14,2	15,1	15,7	14,6	15,8	16,5
842	850	8	695 (615)	645 (515)	620 (465)	15,4	16,3	16,8	15,8	17,0	17,6
942	950	9	795 (715)	745 (615)	720 (565)	16,9	17,8	18,3	17,3	18,5	19,1
1042	1 050	10	895 (815)	845 (715)	820 (665)	18,4	19,3	19,8	18,8	20,0	20,6
1142	1 150	11	995 (915)	945 (815)	920 (765)	19,9	20,8	21,4	20,3	21,5	22,2


Hinweise (1) Der Wert gibt die maximale Hublänge bei montierten Endsensoren an. Der Wert in (1) gibt die Abmessungen für zwei dicht beieinander stehende Führungsschlitten an.

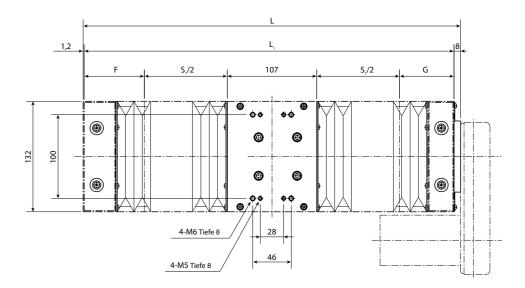
(2) Der Wert gibt die Masse des gesamten Tisches mit einem Führungsschlitten an.

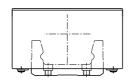
TU60S Tisch mit Faltenbälgen

Einheit: mm

Länge der Führungsschiene L ₁	Gesamt- länge L	Grenzhublänge (¹)	Hublänge (²) S	F	G
290 (244)	299,2 (253,2)	73,6 (68,6)	65 (60)	59 (59)	93 (52)
390 (344)	399,2 (353,2)	147,6 (142,6)	140 (135)	72 (72)	106 (65)
490 (444)	499,2 (453,2)	219,6 (214,6)	210 (205)	86 (86)	120 (79)
590 (544)	599,2 (553,2)	293,6 (288,6)	285 (280)	99 (99)	133 (92)
690 (644)	699,2 (653,2)	393,6 (388,6)	380 (375)	99 (99)	133 (92)
790 (744)	799,2 (753,2)	465,6 (460,6)	455 (450)	113 (113)	147 (106)

 $Hinweise \ (^!) \ Der \ Wert \ gibt \ die \ Grenzwert \ des \ Hubs \ an, \ mit \ dem \ sich \ der \ F\"{u}hrungsschlitten \ bewegen \ kann.$


(²) Der Wert gibt die maximale Hublänge bei montierten Endsensoren an.


Anmerkungen 1. Die Werte in () werden auf Tischen mit Motorumlenkung und Faltenbälgen angewendet.

2. Für die Einbaumaße der Führungsschiene, siehe Maßtabelle für TU60.

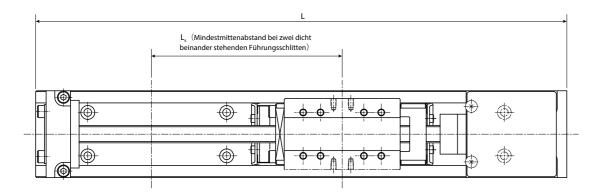
3. Gilt für Tische mit C-Lube.

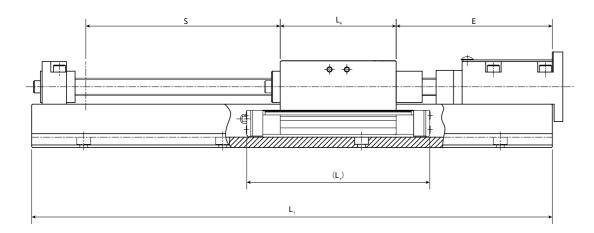
TU86S Tisch mit Faltenbälgen

Einheit: mm

Länge der Führungsschiene L ₁	Gesamt- länge L	Grenzhublänge (¹)	Hublänge (²) S	F	G
490(442)	499,2(451,2)	203 (198)	195 (190)	72 (72)	108 (65)
590(542)	599,2(551,2)	275 (270)	265 (260)	86 (86)	122 (79)
690(642)	699,2(651,2)	349 (344)	340 (335)	99 (99)	135(92)
790(742)	799,2(751,2)	421 (416)	410 (405)	113 (113)	149 (106)
890(842)	899,2(851,2)	521 (516)	510 (505)	113 (113)	149 (106)
990(942)	999,2(951,2)	593 (588)	580 (575)	127 (127)	163 (120)
1 090 (1 042)	1 099.2 (1 051.2)	667 (662)	655 (650)	140 (140)	176 (133)
1 190 (1 142)	1 199.2 (1 151.2)	739 (734)	730 (725)	154 (154)	190 (147)

Hinweise (¹) Der Wert gibt die Grenzwert des Hubs an, mit dem sich der Führungsschlitten bewegen kann.

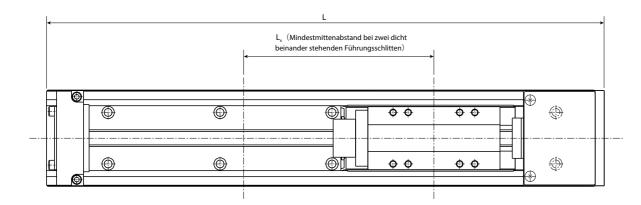

(²) Der Wert gibt die maximale Hublänge bei montierten Endsensoren an.

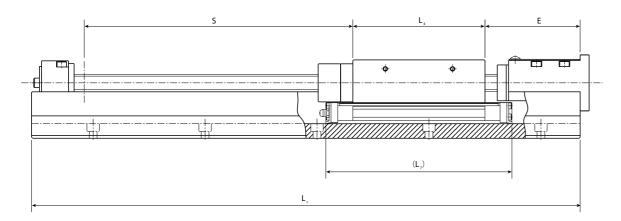

Anmerkungen 1. Die Werte in () werden auf Tischenmit Motorumlenkung und Faltenbälgen angewendet.

2. Für die Einbaumaße der Führungsschiene, siehe Maßtabelle für TU86.

3. Gilt für Tische mit C-Lube.

TU40, TU50 Tisch mit C-Lube


Fin	heit:	mm

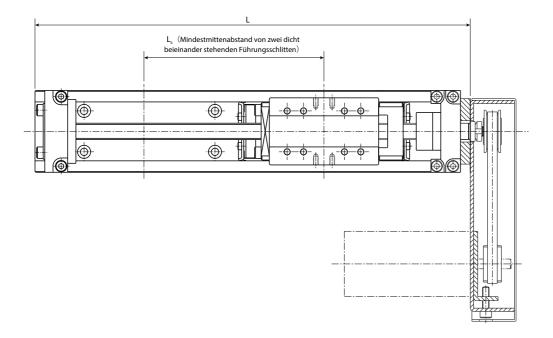

	Modell und Größe	Länge der Führungs- schiene L ₁	Gesamt- länge L	Hublänge (¹) S	E	L ₄	L ₆	L,
		180	186	30(-)				
		240	246	90 (40)			60	55
	TU40C	300	306	150 (100)	90	19,5		
		360	366	210 (160)				
		420	426	270 (220)				
		240	246	80(-)		31,5	70	
	TU40S	300	306	140 (75)	90			67
	TU40F	360	366	200 (135)	90	31,3	70	07
		420	426	260 (195)				
	TU40G	240	246	60(-)				
		300	306	120(-)	90	47,5	85	83
		360	366	180 (105)	90	47,5	85	03
		420	426	240 (165)				

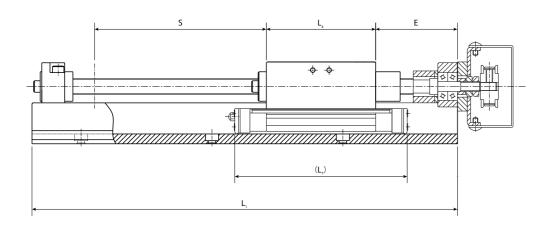
Modell und Größe	Länge der Führungs- schiene L ₁	Gesamt- länge L	Hublänge (¹) S	E	L ₄	L ₆	L ₇
	220	226	65(-)				
	300	306	145 (90)				
	380	386	225 (170)		23,8	65	
TU50C	460	466	305 (250)	90			63
	540	546	385 (330)				
	620	626	465 (410)				
	700	706	545 (490)				
	220	226	45(-)				
	300	306	125 (50)				82
	380	386	205 (130)	90		85	
TU50S TU50F	460	466	285 (210)		42,8		
	540	546	365 (290)				
	620	626	445 (370)				
	700	706	525 (450)				
	300	306	100(-)				
	380	386	180 (80)				
TU50G	460	466	260 (160)	90	66,8	110	106
10300	540	546	340 (240)	90	00,0	110	100
	620	626	420 (320)				
	700	706	500 (400)				

Hinweis (1) Der Wert gibt die maximale Hublänge bei montierten Endsensoren an. Der Wert in (1) gibt die Abmessungen für zwei dicht beieinander stehende Führungsschlittens an. Anmerkung: Für die Abmessungen des Führungsschlittens und der Führungsschiene siehe Maßtabelle für jede Größe.

TU60, TU86, TU100, TU130 Tisch mit C-Lube

_				
Fi	nh	eit	· m	nm


	Länge der	Gesamt-	Hubläng	ge (¹) S	E				
Modell und Größe	Führungs- schiene L ₁	länge L	Steigung 5mm Steigung 10mm	Steigung 20mm	Steigung 5mm Steigung 10mm	Steigung 20mm	L ₄	L ₆	L,
	290	298	90 (40)	70(-)					70
	390	398	190 (140)	170 (120)				75	
TU60C	490	498	290 (240)	270 (220)	100	120	27,4		
TU60FC	590	598	390 (340)	370 (320)	100	120	27,4		
	690	698	490 (440)	470 (420)					
	790	798	798 590 (540) 570 (520)						
	290	298	90(-)	70(-)					95
	390	398	190 (110)	170 (100)					
TU60S	490	498	290 (210)	270 (200)	80	95	52,4	100	
TU60F	590	598	390 (310)	370 (300)	00		32,4		
	690	698	490 (410)	470 (400)					
	790	798	590 (510)	570 (500)					
	290	298	60(-)	- (-)					
	390	398	160 (50)	155(-)					
TU60G	490	498	260 (150)	255 (150)	90	85	83	130	125
TU60FG	590	598	360 (250)	355 (250)	80	65	03	130	123
	690	698	460 (350)	455 (350)					
	790	798	560 (450)	555 (450)					

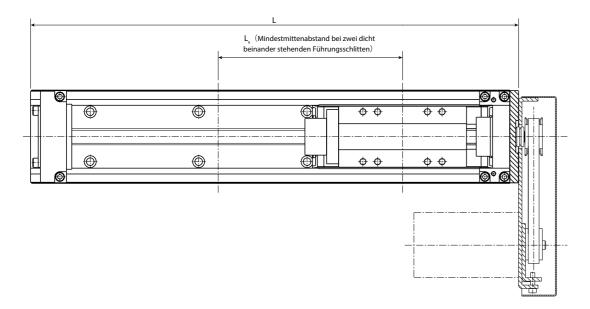

Modell und Größe	Länge der Führungs- schiene L,	Gesamt- länge L	Hublänge (¹) S	E	L ₄	L ₆	L ₇
	490	498	260(190)				
	590	598	360(290)				
	690	698	460(390)				
TU86C	790	798	560(490)	110	42	0.5	02
TU86FC	890	898	660(590)	110	43	95	92
	990	998	760(690)	1			
	1 090	1 098	860(790)]			
	1 190	1 198	960(890)				
	490	498	230(120)				
	590	598	330(220)	1			
	690	698	430(320)				
TU86S	TU86S 790 798 530(420)	85	93	145	142		
TU86F	890	898	630(520)	03	93	145	142
	990	998	730(620)				
	1 090	1 098	830(720)				
	1 190	1 198	930(820)				
	490	498	210 (70)		110		167
	590	598	310(170)				
	690	698	410(270)			170	
TU86G	790	798	510(370)	85			
TU86FG	890	898	610(470)	83	118		107
	990	998	710(570)				
	1 090	1 098	810(670)				
	1 190	1 198	910(770)				
	1 010	1 020	670(540)				
TU100S	1 160	1 170	820(690)	120	111	170	166
TU100F	1 310	1 320	970(840)	130	111	170	166
	1 460	1 470	1 120(990)				
	1 010	1 020	630(480)				
	1 160	1 170	780(630)			195	
TU130S TU130F	1 310	1 320	930(780)	140	132		190
101301	1 460	1 470	1 080(930)				
	1 610	1 620	1 230 (1 080)				

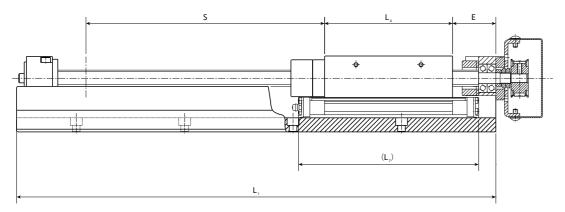
Hinweis (1) Der Wert gibt die maximale Hublänge bei montierten Endsensoren an. Der Wert in (1) gibt die Abmessungen für zwei dicht beieinander stehende Führungsschlitten an.

Anmerkung: Für die Abmessungen des Führungsschlittens und der Führungsschiene siehe Maßtabelle für jede Größe.

TU40, TU50 Tisch mit C-Lube (Ausführung mit Motorumlenkung)

							Einheit: mm
Modell und Größe	Länge der Führungs- schiene L ₁	Gesamt- länge L	Hublänge (¹) S	E	L ₄	L ₆	L,
	140	146	30(-)				
	200	206	90 (40)				
TU40C	260	266	150 (100)	50	19,5	60	55
	320 326	326	210 (160)				
	380	386	270 (220)				
	200	206	80(-)				
TU40S	260	266	140 (75)	50	21.5	70	67
TU40F	320	326	200 (135)	30	31,5	/0	07
	380	386	260 (195)				
	200	206	60(-)				
TU40G	260	266	120(-)	50	47.5	85	83
10400	320	326	180 (105)] 30	47,5	85	03
	380	386	240 (165)				


Modell und Größe	Länge der Führungs- schiene L ₁	Gesamt- länge L	Hublänge (¹) S	E	L ₄	L ₆	L,
	180	186	65(-)				
	260	266	145 (90)				
	340	346	225 (170)				
TU50C	420	426	305 (250)	50	23,8	65	63
	500	506	385 (330)				
	580	586	465 (410)				
	660	666	545 (490)				
	180	186	45(-)				
	260	266	125 (50)	50			
	340	346	205 (130)		42,8		82
TU50S TU50F	420	426	285 (210)			85	
	500	506	365 (290)				
	580	586	445 (370)				
	660	666	525 (450)				
	260	266	100(-)				
	340	346	180 (80)				
TUEOC	420	426	260 (160)	50	66.0	110	106
TU50G	500	506	340 (240)	50	66,8	110	106
	580	586	420 (320)				
	660	666	500 (400)	-			


Hinweis (1) Der Wert gibt die maximale Hublänge bei montierten Endsensoren an. Der Wert in (1) gibt die Abmessungen für zwei dicht beieinander stehende Führungsschlitten an.

Anmerkungen

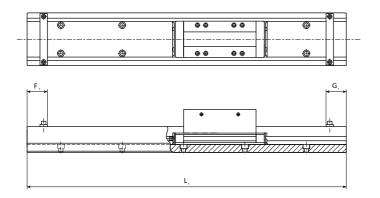
- 1. Teile für die Motorbefestigung sind beigefügt. Diese Abbildung zeigt den fertigen Zustand, nachdem der Motorflansch durch den Kunden montiert wurde.
- 2. Für die Abmessungen des Führungsschlittens und der Führungsschiene siehe Maßtabelle für jede Größe.

TU60, TU86 Tisch mit C-Lube (Ausführung mit Motorumlenkung)

Einheit: mm

	Länge der	Gesamt-	Hubläng	ge (¹) S	E				
Modell und Größe	Führungs- schiene L ₁	länge L	Steigung 5mm Steigung 10mm	Steigung 20mm	Steigung 5mm Steigung 10mm	Steigung 20mm	L ₄	L ₆	L,
	244	252	90 (40)	70(-)					
	344	352	190 (140)	170 (120)					70
TU60C	444	452	290 (240)	270 (220)	55	7.4	27.4	75	
TU60FC	544	552	390 (340)	370 (320)	55	74	27,4		
	644	652	490 (440)	470 (420)					
	744	752	590 (540)	570 (520)					
	244	252	80(-)	70(-)					95
	344	352	180 (110)	170 (100)				100	
TU60S	444	452	280 (210)	270 (200)	40	49 52.4	F2.4		
TU60F	544	552	380 (310)	370 (300)	40	49	52,4		
	644	652	480 (410)	470 (400)					
	744	752	580 (510)	570 (500)					
	244	252	50(-)	- (-)					
	344	352	150 (50)	155(-)					
TU60G	444	452	250 (150)	255 (150)	40	39	83	130	125
TU60FG	544	552	350 (250)	355 (250)	1 40	39	83	130	123
	644	652	450 (350)	450 (350) 455 (350)	1				
	744	752	550 (450)	555 (450)	1				

Modell und Größe	Länge der Führungs- schiene L ₁	Gesamt- länge L	Hublänge (¹) S	E	L ₄	L ₆	L ₇
	442	450	250 (190)				
	542	550	350 (290)				
	642	650	450 (390)				92
TU86C	742	750	550 (490)	70	43	95	
TU86FC	842	850	650 (590)	70	43	95	
	942	950	750 (690)				
	1 042	1 050	850 (790)				
	1 142	1 150	950 (890)				
	442	450	230 (120)				
	542	550	330 (220)				
	642	650	430 (320)	40			
TU86S	742	750	530 (420)		93	145	142
TU86F	842	850	630 (520)		93	143	
	942	950	730 (620)				
	1 042	1 050	830 (720)				
	1 142	1 150	930 (820)				
	442	450	210 (70)				
	542	550	310 (170)				
	642	650	410 (270)				
TU86G	742	750	510 (370)	40	110	170	167
TU86FG	842	850	610 (470)	40	118	170	167
	942	950	710 (570)				
	1 042	1 050	810 (670)				
	1 142	1 150	910 (770)	-			


Hinweis (1) Der Wert gibt die maximale Hublänge bei montierten Endsensoren an. Der Wert in (1) gibt die Abmessungen für zwei eng beieinander stehende Führungsschlittens an.

Anmerkungen

- 1. Teile für die Motorbefestigung sind beigefügt. Diese Abbildung zeigt den fertigen Zustand, nachdem der Motorflansch durch den Kunden montiert wurde.
- 2. Für die Abmessungen des Führungsschlittens und der Führungsschiene siehe Maßtabelle für jede Größe.

Ausführung ohne Spindel

heit:	

Bezeichnung		Länge der	Ohne Abdeckblech		Mit Abdeckblech	
Modell und Größe	der Führungsschiene	Führungsschiene L ₁	F,	G ₁	F,	G ₁
	A 611	130				
TU 25	Ausführung ohne Motorumlenkung	165	14	14	14	14
	3	200				
		140				
		180				
TU 30	Ausführung ohne	220	14	14	14	14
10 30	Motorumlenkung	260				
		300				
		340				
		180				
	A 6"1 1	240				
	Ausführung ohne Motorumlenkung	300	20	18	20	18
		360				
TU 40		420				
10 10		140				
	A 6"1	200				
	Ausführung mit Motorumlenkung	260	20	18	20	18
		320				
		380				
		220				
		300				
	A afiila w a a a a b a a	380				
	Ausführung ohne Motorumlenkung	460	20	18	20	18
		540				
		620				
TU 50		700				
. 5 5 5		180				
		260				
	Aucführung mit	340				
	Ausführung mit Motorumlenkung	420	20	18	20	18
		500				
		580				
		660				

	Bezeichnung	Länge der	Ohne Abo	leckblech	Mit Abdeckblech	
Modell und Größe	der Führungsschiene	Führungsschiene	F,	G ₁	F,	G ₁
		L, 290	'	'	'	'
		390				
		490	22	17	25	29
	Ausführung ohne Motorumlenkung	590	32	17	35	29
		690				
		790				
TU 60		990 1190	32	17	_	_
		244	32	17		
		344				
		444			35	29
	Ausführung mit Motorumlenkung	544	32	28		
		644				
		744	-			
		490				
		590				
		690				
		790				
	A of illumination of the c	890	32	19	35	29
	Ausführung ohne Motorumlenkung	990	32	.,	33	
		1 090				
		1 190				
		1 390				
TU 86		1 590	32	19	_	_
		442				
		542				
		642				
	Ausführung mit	742				
	Ausführung mit Motorumlenkung	842	32	28	35	29
		942				
		1 042				
		1 142				
		1 010				
TH 100	Ausführung ohne	1 160	25	24	25	3.4
TU 100	Ausführung ohne Motorumlenkung	1 310	35	34	35	34
		1 460				
		1 010				
		1 160				
TU 130	Ausführung ohne Motorumlenkung	1 310	35	38	35	38
	Motorumentung	1 460				
		1 610				
Ammanduman Film dia A		11		Ma Otala alla Kiin i ada Cu		<u> </u>

Anmerkung: Für die Abmessungen des Führungsschlittens und der Führungsschiene siehe Maßtabelle für jede Größe.

II-95

Wichtige Produktbeschreibungen

Antriebsmethode	Präzisionspindel
Linear-Wälzkörperführung	Kugelumlaufführung
Eingebaute Schmierplatte	Eingebaute "C-Lube"-Schmierplatte
Tisch- und Gestellmaterial	Hochfeste Aluminiumlegierung
Sensor	Standardmäßig mitgeliefert

Genauigkeit

	Einheit: mm
Wiederholgenauigkeit	±0,002
Positioniergenauigkeit	0,015~0,060
Leerlauf	-
Parallelität der Tischbewegung A	-
Parallelität der Tischbewegung B	0,020~0,070
Verwindungsgenauigkeit	_
Geradheit	-
Umkehrspiel	0,003

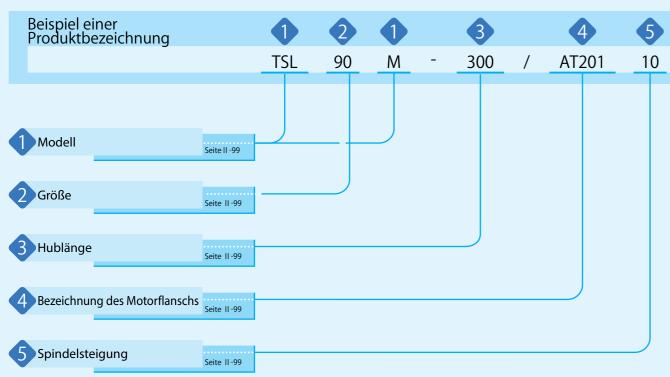
Vorteile

Positioniertisch mit geringem Gewicht und großem Hub

Positioniertisch mit geringem Gewicht und großem Hub, konfiguriert mit einem Führungsschlitten und einem Tischbett aus einer hochfesten Aluminiumlegierung.

■ Stabile, hohe Laufgenauigkeit und Positioniergenauigkeit

Durch das Verwenden von 2 parallelen Kugelumlaufführungen und der Kombination mit Präzisionsspindeln wird eine hohe Laufgenauigkeit und Positioniergenauigkeit erzielt.


● Konfigurierung eines Systems mit mehreren Achsen, verfügbar mit XY-Verbindungsstück

Eine Reihe von vier Größen von 90 mm bis 220 mm (Tischbreite) ist verfügbar. Eine Konfigurierung mit mehreren Achsen kann einfach mithilfe eines XY-Verbindungsstücks erzielt werden.

Variation

Form	Modell und Größe	Tischbreite Hublänge (mm))					
Form	Modell und Große	(mm)	50	100	150	200	250	300	400	500	600	800	1 000
90mm	TSL 90 M	90	☆	☆	☆	☆	☆	☆	_	_	_	_	_
120mm	TSL120 M	120	_	☆	☆	☆	☆	☆	☆	☆	☆	_	_
170mm	TSL170 M	170	_	_	☆	☆	☆	☆	☆	$\stackrel{\wedge}{\sim}$	_	_	_
170mm	TSL170SM	170	_	_	_	_	_	☆	☆	☆	☆	☆	\Rightarrow
220mm	TSL220 M	220	_	_	_	_	_	☆	☆	☆	☆	\Rightarrow	\Rightarrow

Produktbezeichnung.

Produktbezeichnung und Ausführung

1 Todaktbezelerinang and Austaniang								
1 Modell		TSL···M: Präzisionspositioniertis	TSL···M: Präzisionspositioniertisch L					
2 Größe		Größe gibt die Tischbreite an.	Größe gibt die Tischbreite an.					
		Wählen Sie eine Größe aus der l	Liste in Tabelle 1.					
3 Hublänge		Wählen Sie eine Hublänge aus der Liste in Tabelle 1.						
Tabelle 1 Größen, M	laße der Tischbreite (und Hublängen	Einheit: mm					
Modell und Größe	Tischbreite	Hubläng	e					
TSL 90 M	90	50, 100, 150, 200, 250, 300						
TSL120 M 120		100, 150, 200, 250, 300, 400, 500, 600						
TSL170 M	170	150, 200, 250, 300, 400, 500						
TSL170S M 170		300, 400, 500, 600, 800, 1 000						
TSL220 M	220	300, 400, 500, 600, 800, 1 000						

4 Bezeichnung d. Motorflanschs	Wählen Sie zur Angabe des Motorflansches eine Bezeichnung aus Tabelle 2.
	 Motor sollte durch den Kunden montiert werden. Bitte geben Sie die für den zu verwendenden Motor anwendbaren Motorflansch an. Eine in Tabelle 3 dargestellte Kupplung wird vor dem Versand auf dem Tisch montiert. Die endgültige Anpassung sollte jedoch durch den Kunden erfolgen, da sie nur vorübergehend fixiert wird. Sollte ein AC-Servomotor-Motorflansch ausgewählt werden, wird kein Referenzsensor bereitgestellt.
5 Spindelsteigung	5: Steigung 5 mm 10: Steigung 10 mm

Tabelle 2 Ausführung des Motorflansches

Zu verwendende Motormodelle							Motor	flansch	
Art	Hersteller	Baureihe	Modell	Nenn- leistung W	Flansch Größe mm	TSL 90M TSL170M	TSL120M	TSL170SM	TSL220M
			SGMJV-01A	100	□40	AT201	AT201	_	_
	YASKAWA	Σ-V	SGMAV-01A	100	40	AT201	AT201	_	_
	ELECTRIC CORPORATION	Z-V	SGMJV-02A	200	□60	_	_	AT202	AT202
			SGMAV-02A	200	0 000	_	_	AT202	AT202
			HF-MP13, HG-MR13	100	□40	AT201	AT201	-	-
	Mitsubishi Electric	J3, J4	HF-KP13, HG-KR13	100	⊔ 4 0	AT201	AT201	_	_
AC-	Corporation	J3, J 4	HF-MP23, HG-MR23	200	□60	_	-	AT202	AT202
Servomotor			HF-KP23, HG-KR23	200		_	_	AT202	AT202
Servomotor	Panasonic Corporation	MINAS A5	MSMD01	100	□38	AT203	AT203	-	-
			MSME01			AT203	AT203	_	_
			MSMD02	200	□60	_	_	AT204	AT204
			MSME02	200		_	_	AT204	AT204
	Hitachi Industrial		ADMA-01L	100	□40	AT201	AT201	_	_
	Equipment Systems Co., Ltd	AD	ADMA-02L	200	□60	_	_	AT202	AT202
			AR66		□60	AT205	AT206	-	_
			AR69		□60	AT205	AT206	_	-
			AR98		□85	_	_	AT207	AT210
		α Schritt	AR911		□85	-	_	AT207	AT210
Schrittmotor	ORIENTAL MOTOR	a scillit	AS66		□60	AT208	AT209	_	_
Schrittmotor	Co., Ltd.		AS69		□60	AT208	AT209	-	-
			AS98		□85	_	_	AT207	AT210
			AS911		□85	_	_	AT207	AT210
		RK	RK56 • CRK56	(1)	□60	AT208	AT209	_	_
		CRK	RK59		□85	_	_	AT207	AT210

Hinweis (1) Gilt für den Außendurchmesser Ø8 der Motorwelle.

Anmerkung: Detaillierte Motorspezifikationen finden Sie in dem jeweiligen Katalog des Herstellers.

Tabelle 3 Kupplungsmodelle

Motor- flansch	Kupplungsmodelle	Hersteller	Trägheitsmoment der Kupplung J _c ×10 ⁻⁵ kg • m²
AT201	UA-25C- 8× 8	Sakai Manufacturing Co., Ltd	0,29
AT202	UA-35C-12×14	Sakai Manufacturing Co., Ltd	1,34
AT203	UA-25C- 8× 8	Sakai Manufacturing Co., Ltd	0,29
AT204	UA-35C-11×12	Sakai Manufacturing Co., Ltd	1,34
AT205	MSTS-25C- 8×10	Nabeya Bi-tech Kaisha	0,25
AT206	MSTS-25C- 8×10	Nabeya Bi-tech Kaisha	0,71
AT207	MSTS-32C-12×14	Nabeya Bi-tech Kaisha	2,70
AT208	MSTS-20C- 8× 8	Nabeya Bi-tech Kaisha	0,25
AT209	MSTS-25C- 8× 8	Nabeya Bi-tech Kaisha	0,71
AT210	MSTS-32C-12×14	Nabeya Bi-tech Kaisha	2,70

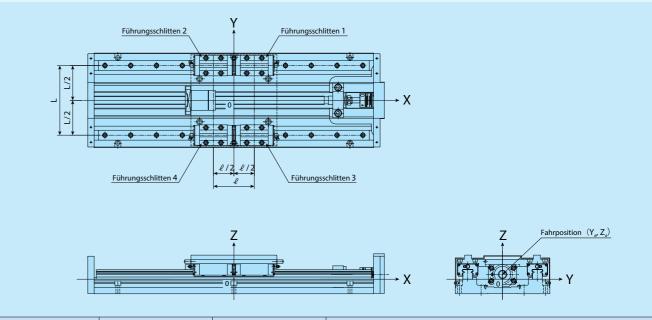
Anmerkung: Detaillierte Angaben zu den Kupplungen finden Sie im jeweiligen Katalog des Herstellers.

Ausführungen ...

Tabelle 4 Genauigkeit Einheit: mm

Tabelle 4 Gerladigkeit									
Modell und Größe	Hublänge	Wiederholgenauigkeit	Positioniergenauigkeit	Parallelität der Tischbewegung B	Umkehrspiel				
	50		0,015	0,020					
	100		0,020						
TSL 90 M	150	±0,002	0,020	0,030	0,003				
13L 90 W	200	±0,002	0.025	0,030	0,003				
	250		0,025						
	300		0,030	0,040					
	100		0,020						
	150		0,020	0,030					
	200		0,025	0,030					
TSL120 M	250	±0,002	0,023		0,003				
13L12U IVI	300	±0,002	0,030	0,040					
	400		0,040	0,050					
	500		0,045	0,030					
	600		0,050	0,070					
	150		0,020						
	200		0,025	0,030	- 0,003				
TSL170 M	250	±0,002	0,023						
ISEI70 W	300	±0,002	0,030		0,003				
	400		0,040	0,050					
	500		0,045						
	300		0,030	0,040					
	400		0,040	0,050					
TSL170SM	500	±0,002	0,045	0,030	0,003				
TSL220 M	600	±0,002	0,050		0,003				
	800			0,070					
	1 000		0,060						

Table 5 Maximale Geschwindigkeit


		Hublänge	Maximale Geschwindigkeit mm/s			
Motormodell	Modell und Größe	mm	Steigung 5 mm	Steigung 10 mm		
AC-Servo-	TSL 90 M TSL120 M TSL170 M	-	250	500		
motor	TSL170SM TSL220 M	≤ 600	250	500		
		800	249	498		
		1 000	169	338		
Schritt- motor	TSL 90 M TSL120 M TSL170 M TSL170SM TSL220 M	-	150	300		

Anmerkung: Um die durchführbare, maximale Geschwindigkeit zu ermitteln, müssen die Betriebsbedingungen des zu verwendeten Motors und die Lastbedingungen berücksichtigt werden.

Table 6 Maximale Belastung

Modell und Größe	Spindelsteigung	Maximale Belastung kg		
	mm -	Horizontal	Vertikal	
TSL 90M	5	46	7	
131 90101	10	26	4,7	
TSL120M	5	195	18	
IJLIZUM	10	97	18	
TSL170M	5	195	18	
1317000	10	97	17	
TSL170SM	5	218	21	
13L1703W	10	113	20	
TSL220M	5	226	19	
13L220W	10	111	18	

Tabelle 7 Ausführung der Wälzkörper-Linearführung

	Dynamische	Statische Grundnennlast	Anordnung						
Modell und Größe	öße Grundnennlast (¹) C N	(¹) C _o N	L mm	R mm	Y _d mm	Z _d mm			
TSL 90 M	1 810	2 760	60	60	0	-7			
TSL120 M			80	66	0	8			
TSL170 M	11 600	13 400	106	66	0	11			
TSL170SM			120	130	0	1			
TSL220 M	25 200	28 800	162	95	0	11			

Hinweis (1) Gibt den Wert pro Führungsschlitten an.

Tabelle 8.1 Ausführungen der Spindel

Modell und Größe	Steigung mm	Schaftdurchmesser mm	Axialspiel mm	Dynamische Grundnennlast C N	Statische Grundnennlast C _o N
TSL 90 M	TCI 00 M	10	0,005	1 470	2 210
13L 90 W	10	10	0,003	1 030	1 370
TSL120 M	5	15	0,005	3 820	6 370
TSL170 M	10	13	0,003	3 820	6 370
TSL170SM	5	20	0.005	4 460	8 580
TSL220 M	10	20	0,005	4 460	8 580

Tabelle 8.2 Ausführungen der Spindel

Einheit: mm

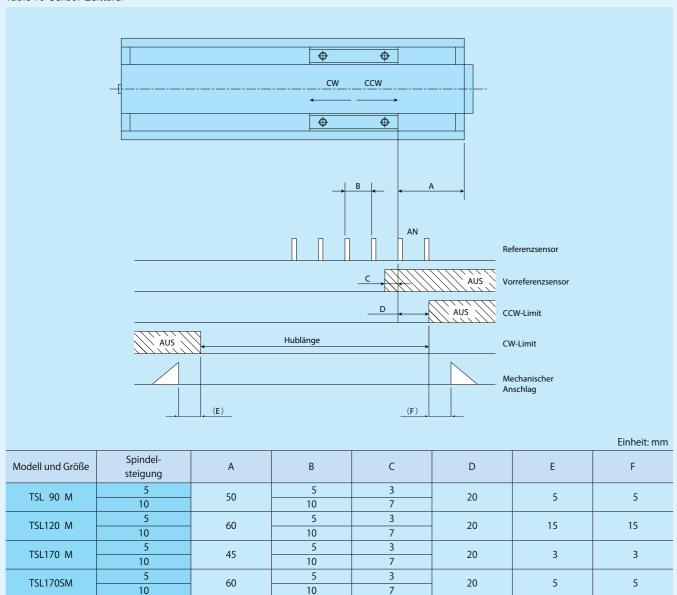

Modell und Größe	Hublänge	Schaftdurchmesser	Gesamtlänge
	50		179
	100		229
TSL 90 M	150	10	279
13L 90 WI	200	10	329
	250		379
	300		429
	100		273
	150		323
	200		373
TSL120 M	250	15	423
ISLIZU WI	300	13	473
	400		573
	500		673
	600		773
	150	15	289
	200		339
TSL170 M	250		389
ISLI70 WI	300	13	439
	400		539
	500		639
	300		545
	400		645
TSL170SM	500	20	745
1321703101	600	20	845
	800		1 045
	1 000		1 245
	300		545
	400		645
TCI 220 M	500	20	745
TSL220 M	600	20	845
	800		1 045
	1 000		1 245

Tabelle 9 Trägheits- und Anlaufmoment des Tisches

Modell und Größe	Hublänge	Trägheitsmome × 10-5	ent des Tisches J _T Ēkg•m²	Anlaufmoment T _s
	mm	Steigung 5 mm	Steigung 10 mm	- N ⋅ m
TSL 90 M	50	0,20	0,33	
	100	0,25	0,38	
	150	0,28	0,40	0,05
13L 90 M	200	0,33	0,45	0,03
	250	0,35	0,48	
	300	0,40	0,53	
	100	1,3	1,7	
	150	1,5	1,9	
	200	1,7	2,1	
TSL120 M	250	1,9	2,3	0,06
13L12U W	300	2,1	2,5	0,00
	400	2,4	2,9	
	500	2,8	3,3	
	600	3,2	3,7	
	150	1,4	1,8	
	200	1,6	2,0	
TSL170 M	250	1,8	2,2	0,06
ISLI70 IVI	300	2,0	2,4	0,00
	400	2,3	2,8	
	500	2,7	3,2	
	300	6,9	7,4	
	400	8,1	8,6	
TSL170S M	500	9,3	9,8	0,10
13L1703 WI	600	11	11	0,10
	800	13	14	
	1 000	15	16	
	300	7,5	8,5	
	400	8,7	9,7	
TSL220 M	500	9,9	11	0,10
I SLZZU IVI	600	11	12	0,10
	800	14	15	
	1 000	16	17	

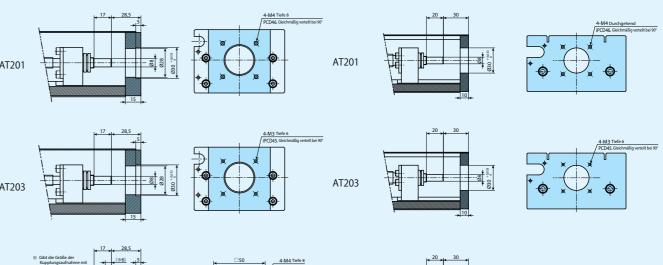
Ausführung mit Sensoren

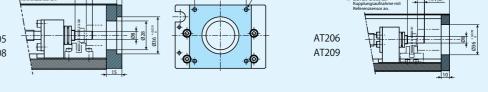
Table 10 Sensor-Zeittafel

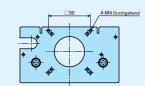
5

5

20

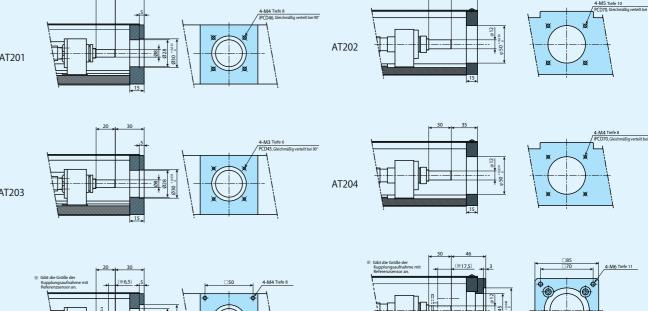

Anmerkung: Die Ausführungen der jeweiligen Sensoren finden Sie im Abschnitt Sensorausführung unter Allgemeine Erläuterung.

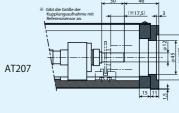

60

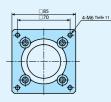

5

Abmessungen des Motorflanschs.

TSL90M TSL120M

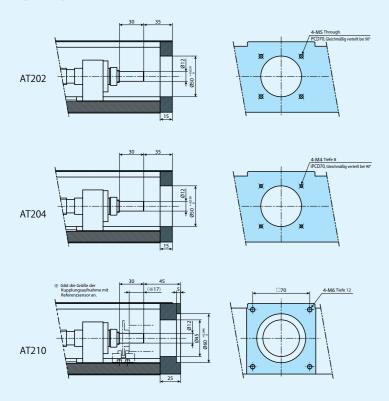


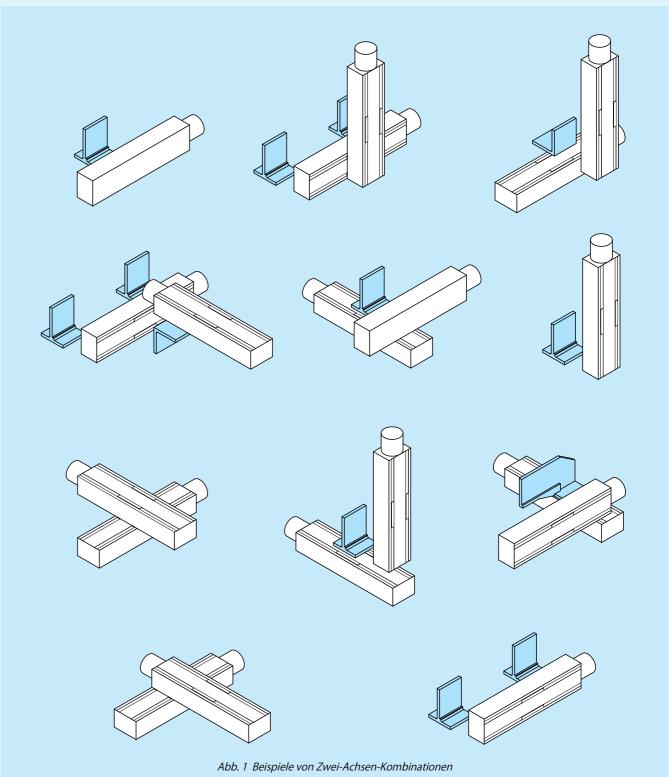




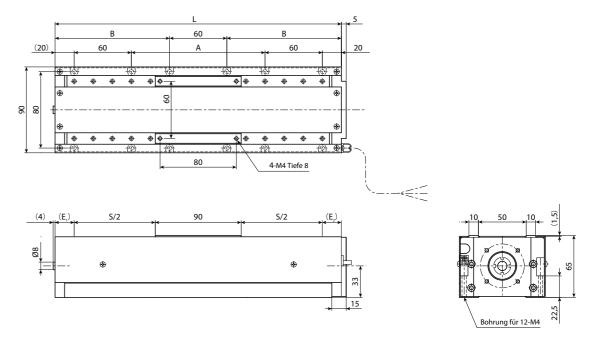
TSL170M

TSL170SM

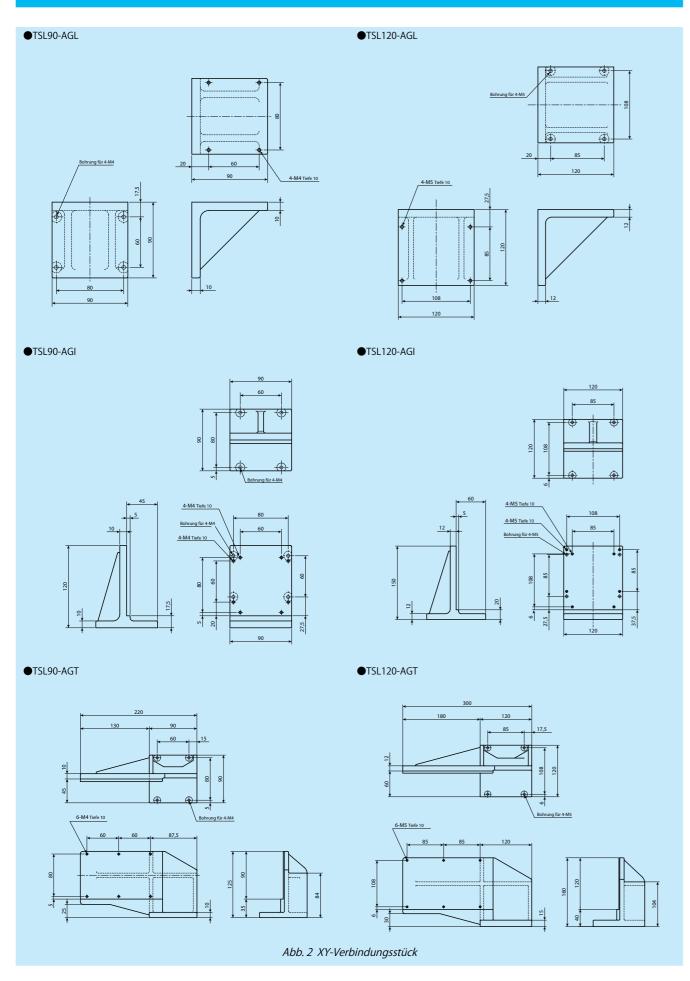



TSL220 M

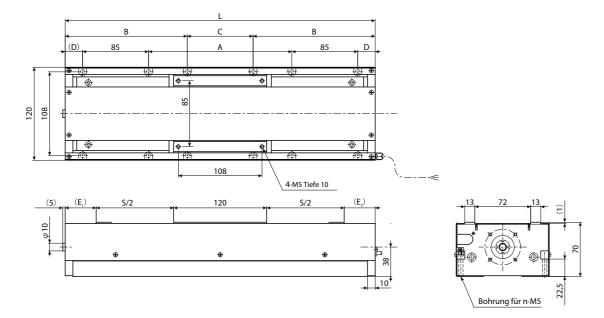
TSL220M


XY-Verbindungsstück.

Der Präzisionspositioniertisch L kann, wie in Abb. 2 dargestellt, mithilfe eines XY-Verbindungsstücks in verschiedenen Kombinationen von zwei Achsen konfiguriert werden. Bei Interesse geben Sie bitte die in der Abbildung gelistete Modellnummer des gewünschten Verbindungsstückes an.

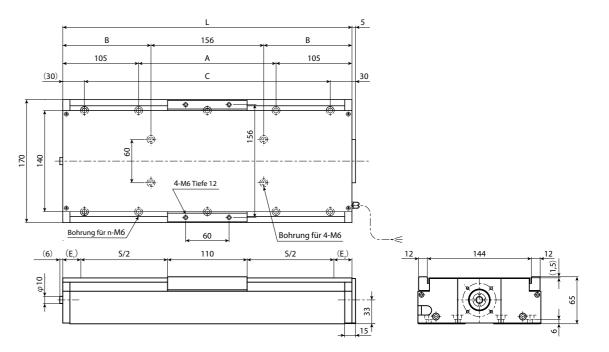


TSL90M



Einheit: mm

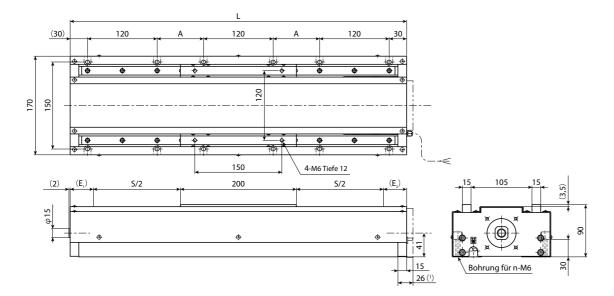
Produktbezeichnung		Hublänge		Abm	Masse		
	S	E,	E ₂	Gesamtlänge L	Gewindebohrun A	ngen des Tisches B	(Ref.) kg
TSL90M- 50	50	30		200	40	70	2,8
TSL90M-100	100			250	90	95	3,2
TSL90M-150	150		30	300	140	120	3,5
TSL90M-200	200		30	350 190	145	3,9	
TSL90M-250	250			400	240	170	4,2
TSL90M-300	300			450	290	195	4,6


TSL120M

Einheit: mm

Produktbezeichnung	Hublänge			Abmessungen des Tisches						Masse		
	S	E,	Е	Gesamtlänge	esamtlänge Gewindebohrungen des Tisches					(Ref.)		
		L ₁	E ₂	L	Α	В	С	D	n	kg		
TSL120M-100	100			300	85	107,5	85	22,5	8	6,1		
TSL120M-150	150			350	135	132,5	85	22,5	12	6,6		
TSL120M-200	200			400	185	157,5	85	22,5	12	7,1		
TSL120M-250	250		40	450	235	182,5	85	22,5	12	7,6		
TSL120M-300	300	40	40	500	255	207,5	85	37,5	12	8,1		
TSL120M-400	400					600	355	207,5	185	37,5	12	9,1
TSL120M-500	500			700	455	207,5	285	37,5	12	10,1		
TSL120M-600	600			800	555	207,5	385	37,5	12	11,1		

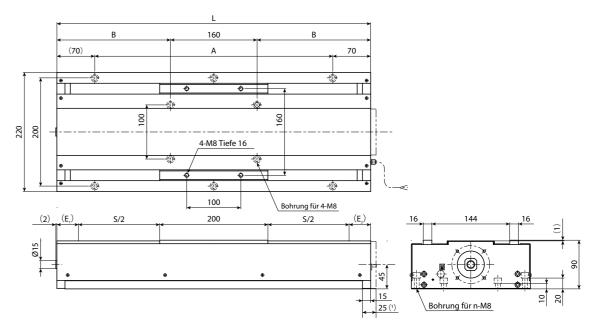
TSL170M



Einheit: mm

	Hublänge			Abmessungen des Tisches					
Produktbezeichnung	S E,		E ₂	Gesamtlänge	Gewindebohrungen des Tisches				
		Ε,		L	Α	В	C (Anzahl Bohrungen×Abstand)	n	kg
TSL170M-150	150			310	100	77	250	8	7,2
TSL170M-200	200			360	150	102	300	8	7,8
TSL170M-250	250	25	25	410	200	127	350 (2×175)	10	8,4
TSL170M-300	300	23		460	250	152	400 (2×200)	10	9,1
TSL170M-400	400			560	350	202	500 (2×250)	10	10,4
TSL170M-500	500			660	450	252	600 (2×300)	10	11,6

TSL170SM



F:		
⊢ın	heit:	mm

		Hublänge			.,		
Produktbezeichnung	S	E,	E ₂	Gesamtlänge L	Gewindebohrungen des Tisches		Masse (Ref.)
					C (Anzahl Bohrungen×Abstand)	n	kg
TSL170SM- 300	300			580	80	12	14,8
TSL170SM- 400	400			680	130	12	16,6
TSL170SM- 500	500	40	40	780	80 180	12	18,5
TSL170SM- 600	600	40	40	880	230	12	20,3
TSL170SM- 800	800			1 080	330 (2×165)	16	24,0
TSL170SM-1000	1 000			1 280	430 (2×215)	16	27,7

Hinweis (1) Gilt für AT207.

TSL220M

Einheit: mm

			Hublänge			Abmessungen des Tisches				
Produktbezeichnung	S	E,	E ₂	C	Gewindebohrungen des Tisches			Masse (Ref.)		
				Gesamtlänge L	A (Anzahl Bohrungen×Abstand)	В	n	kg		
	TSL220M- 300	300	40		580	440 (2×220)	210	6	20,1	
	TSL220M- 400	400		.		680	540 (2×270)	260	6	22,5
	TSL220M- 500	500		40	780	640 (2×320)	310	6	24,7	
	TSL220M- 600	600	40	40	880 740 (4×185) 360	360	10	27,0		
	TSL220M- 800	800				10	31,5			
	TSL220M-1000	1 000			1 280	1 140 (4×285)	560	10	36,2	

Hinweis (1) Gilt für AT210.

TSLH···M CTLH···M

II-115

Vorteile

Hochpräziser, hochsteifer Positioniertisch

Hochpräziser und hochsteifer Positioniertisch, der mit gusseisernen Führungsschlitten und Tischbetten mit hoher $Steifigkeit\ und\ Schwingungs d\"{a}mpfung\ konfiguriert\ wurde.$

● Hohe Lauf- und Positioniergenauigkeit

Eine hohe Lauf- und Positioniergenauigkeit wird durch den Einbezug von 2 parallelen Kugelumlaufführungen auf gusseisernen Führungsschlitten und Tischbetten erzielt, das durch eine genaue Bodenanpassung in Kombination mit Präzisionsspindeln ergänzt wird.

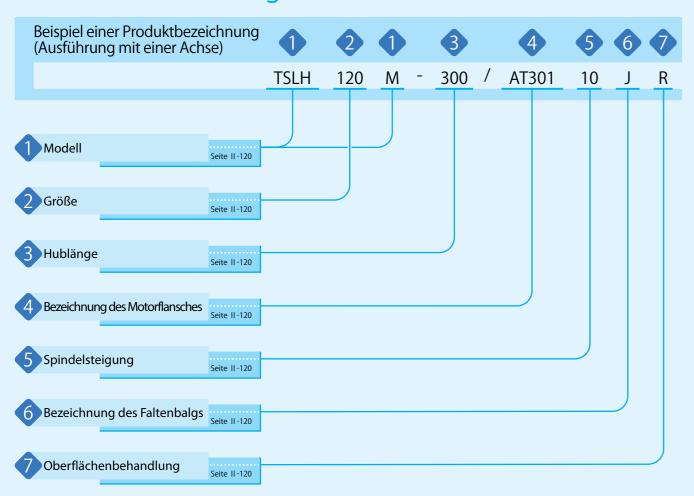
● Hohe Steifigkeit und hohe Belastbarkeit

Der Aufbau bietet eine hohe Belastbarkeit und ist widerstandsfähig gegenüber komplexen Momentbelastungen, da zwei Kugelumlaufführungen optimal auf dem hochsteifem Tischbett positioniert sind.

Variation

F	Madelland Caro	Tischbreite				Н	lubläng	e (mm))			
Form	Modell und Größe	(mm)	100	150	200	250	300	400	500	600	800	1000
120mm	TSLH120M	120	☆	☆	☆	☆	☆	_	_	_	_	_
220mm	TSLH220M	220	_	☆	☆	☆	☆	☆	(☆)	(☆)	_	_
320mm	TSLH320M	320	_	_	_	_	☆	☆	\Rightarrow	(☆)	(☆)	(☆)
420mm	TSLH420M	420	_	_	_	_	_	_	☆	☆	☆	(☆)

S E B S S S S S S S S S S S S S S S S S	C-Lube Maintenance-free	Spindel Linear
Spindel		Tischbett
	Kugelumlaufführung Y-Tisch	
CTLH···M		
Wichtigo Produkthoschroibungen	X-Tisch Conquigkoit	× ×


Wichtige Produktbeschreibungen

Antriebsmethode	Präzisionspindel
Linear-Wälzkörperführung	Kugelumlaufführung
Eingebaute Schmierplatte	Eingebaute "C-Lube"-Schmierplatte
Tisch- und Gestellmaterial	Gusseisen
Sensor	Standardmäßig mitgeliefert

Genauigkeit

	Einheit: mm
Wiederholgenauigkeit	±0,002
Positioniergenauigkeit	0,010~0,035
Leerlauf	-
Parallelität der Tischbewegung A	0,010~0,035
Parallelität der Tischbewegung B	-
Verwindungsgenauigkeit	-
Geradheit	0,005~0,025
Umkehrspiel	0,001

Produktbezeichnung.

Produktbezeichnung und Ausführung ...

1 Modell	TSLH···M: Präzisionspositioniertisch LH (Ausführung mit einer Achse)
2 Größe	Größe gibt die Tischbreite an. Wählen Sie eine Größe aus der Liste in Tabelle 1.
Hublänge	Wählen Sie eine Huhlänge aus der Liste in Tabelle 1

Tabelle 1 Größen, Maße der Tischbreite und Hublängen

_				• .		
⊢	ın	ıh	Δ	ıt٠	m	m

Modell und Größe	Tischbreite	Hublänge
TSLH120M	120	100, 150, 200, 250, 300
TSLH220M	220	150, 200, 250, 300, 400 (500, 600)
TSLH320M	320	300, 400, 500 (600, 800, 1 000)
TSLH420M	420	500, 600, 800 (1 000)

Maßtabelle.

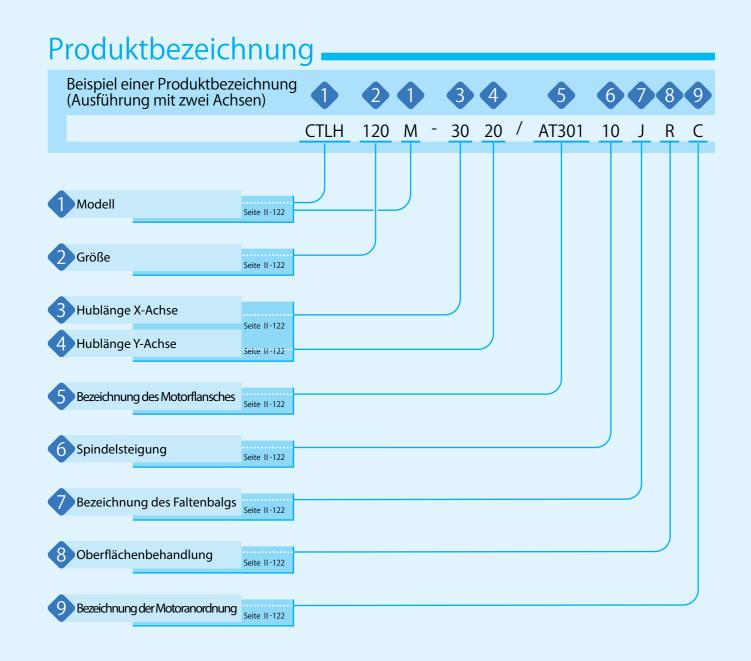
Anmerkung: Wenn die in()aufgeführte Hub	olänge benötigt wird, bitte IK□ kontaktieren.
4 Bezeichnung des Motorflansches	
	 Wählen Sie zur Angabe des Motorflansches eine Bezeichnung aus Tabelle 3. Motor sollte durch den Kunden montiert werden. Bitte geben Sie die für den zu verwendenden Motor anwendbaren Motorflansch an. Eine in Tabelle 4 dargestellte Kupplung wird vor dem Versand auf dem Tisch montiert. Die endgültige Anpassung sollte jedoch durch den Kunden erfolgen, da sie nur vorübergehend fixiert wird. Sollte ein AC-Servomotor-Motorflansch ausgewählt werden, wird kein Referenzsensor bereitgestellt.
5 Spindelsteigung	
5 Spillacisterguing	5: Steigung 5 mm 10: Steigung 10 mm
6 Bezeichnung des Faltenbalgs	
bezeichhung des Faitenbaigs	Kein Symbol: Ohne Faltenbälge J : Mit Faltenbälgen
	Bei einem Tisch mit Faltenbälgen ist die verfügbare Hublänge etwas kürzer, konsultieren Sie daher bitte die

7 Oberflächenbehandlung

Kein Symbol: Schwarzchromatierung der Oberflächen

: Schwarzchromatierung der Oberflächen 1 : Schwarzchromatierung der Oberflächen 2

Schwarzchromatierung der Oberflächen: Die wichtigsten Komponenten außer Kugelumlaufführung, Spindel und Kugellager werden beschichtet.


Bei einem Tisch mit Faltenbälgen ist die verfügbare Hublänge etwas kürzer, konsultieren Sie daher bitte die

Schwarzchromatierung der Oberflächen 1: Zusätzlich zur Schwarzchromatierung der Oberflächen wird auch die Oberfläche der Kugelumlaufführung beschichtet.

Schwarzchromatierung der Oberflächen 2: Zusätzlich zur Schwarzchromatierung der Oberflächen 1 wird auch die Oberfläche der Spindel beschichtet.

Die Schwarzchromatierung der Oberflächen verbessert die Korrosionsbeständigkeit durch eine schwarze Chrombeschichtung der Oberflächen.

Bei den oberen und unteren Oberflächen des Tisches und die Referenzoberflächen der jeweiligen Teile ist die Oberflächenbehandlung nicht einbegriffen.

Produktbezeichnung und Ausführung

1 Modell CTLH···M: Präzisionspositioniertisch LH (Ausführung mit zwei Achsen) 2 Größe Größe gibt die Tischbreite an. Wählen Sie eine Größe aus der Liste in Tabelle 2. Tische mit unterschiedlichen Größen können ebenfalls kombiniert werden.

3 Hublänge X-Achse Wählen Sie eine Hublänge aus der Liste in Tabelle 2. Hublängen der jeweiligen Achsen werden in cm angegeben. Bitte beachten Sie, dass die möglichen Hublängen für X- und Y-Achsen unterschiedlich sein können. 4 Hublänge Y-Achse Bei einem Tisch mit Faltenbälgen ist die verfügbare Hublänge etwas kürzer, siehe Maßtabelle.

Tabelle 2 Größen, Maße der Tischbreite und Hublängen

Einheit: mm

Modell und Größe	Tischbreite	Hubl	änge
Modeli dila diobe	riscribreite	X-Achse	Y-Achse
		100	100
		200	100
CTLH120M	120	200	200
		300	200
		300	300
CTLH220M	220	200	200
		300	200
		300	300
		400	300
		400	400
CTLH320M		300	300
		400	300
	320	400	400
		500	400
		500	500

5 Bezeichnung des Motorflansches	Wählen Sie zur Angabe des Motorflansches eine Bezeichnung aus Tabelle 3.
	 Motor sollte durch den Kunden montiert werden. Bitte geben Sie die für den zu verwendenden Motor anwendbaren Motorflansch an. Eine in Tabelle 4 dargestellte Kupplung wird vor dem Versand auf dem Tisch montiert. Die endgültige Anpassung sollte jedoch durch den Kunden erfolgen, da sie nur vorübergehend fixiert wird. Sollte ein AC-Servomotor-Motorflansch ausgewählt werden, wird kein Referenzsensor bereitgestellt.
6 Spindelsteigung	5: Steigung 5 mm 10: Steigung 10 mm
7 Bezeichnung des Faltenbalgs	Kein Symbol: Ohne Faltenbälge J: Mit Faltenbälgen Bei einem Tisch mit Faltenbälgen ist die verfügbare Hublänge etwas kürzer, siehe Maßtabelle.
8 Oberflächenbehandlung	Kein Symbol: Schwarzchromatierung der Oberflächen R : Schwarzchromatierung der Oberflächen 1

: Schwarzchromatierung der Oberflächen 2

Schwarzchromatierung der Oberflächen: Die wichtigsten Komponenten außer Kugelumlaufführung, Spindel und Kugellager werden beschichtet.

Schwarzchromatierung der Oberflächen 1: Zusätzlich zur Schwarzchromatierung der Oberflächen wird auch die Oberfläche der Kugelumlaufführung beschichtet.

Schwarzchromatierung der Oberflächen 2: Zusätzlich zur Schwarzchromatierung der Oberflächen 1 wird auch die Oberfläche der Spindel beschichtet.

Die Schwarzchromatierung der Oberflächen verbessert die Korrosionsbeständigkeit durch eine schwarze

Chrombeschichtung der Oberflächen. Bei den oberen und unteren Oberflächen des Tisches und die Referenzoberflächen der jeweiligen Teile ist die

Oberflächenbehandlung nicht einbegriffen.

9 Bezeichnung der Motoranordnung

Kein Symbol: Standardkonfiguration

: Umgekehrte Konfiguration

Standardkonfiguration: Eine Anordnung, bei der jeweils die X-Achsen-Motorseite auf der Vorderseite und die Y-Achsen-Motorachse auf der rechten Seite angebracht ist.

Umgekehrte Konfiguration: Eine Anordnung, bei der jeweils die X-Achsen-Motorseite auf der Vorderseite und die Y-Achsen-Motorachse auf der linken Seite angebracht ist.

1N=0,102kgf=0,2248lbs.

1mm=0,03937 Zoll

II-121

II - 122

Tabelle 3 Ausführung des Motorflansches

	_								
	Zu ve	rwendende Mo	tormodelle		Flansch-		Motori	flansch	
Art	Hersteller	Baureihe	Modell	Nenn- leistung W	größe mm	TSLH120M CTLH120M	TSLH220M CTLH220M	TSLH320M CTLH320M	TSLH420M
			SGMJV-01A	100	□40	AT301	-	-	_
			SGMAV-01A	100	□40	AT301	_	_	_
ναςκανια	YASKAWA		SGMJV-02A	200		AT302	AT303	_	_
	ELECTRIC	Σ-V	SGMAV-02A	200	□60	AT302	AT303	_	_
	CORPORATION	∠-∨	SGMJV-04A	400		_	AT303	AT304	_
	CONFORMION		SGMAV-04A	400		_	AT303	AT304	_
			SGMJV-08A	750	□80	_	_	AT305	AT306
			SGMAV-08A	750		_	_	AT305	AT306
			HF-MP13, HG-MR13	100	□40	AT301	_	_	_
			HF-KP13, HG-KR13	100		AT301	-	-	_
	Mitsubishi		HF-MP23, HG-MR23	200		AT302	AT303	_	_
	Electric	J3. J4	HF-KP23, HG-KR23	200	□60	AT302	AT303	_	_
	Corporation	33.34	HF-MP43, HG-MR43	400		_	AT303	AT304	_
AC-Servo- motor	Corporation		HF-KP43, HG-KR43	700		_	AT303	AT304	_
			HF-MP73, HG-MR73	750	□80	_	_	AT305	AT306
			HF-KP73, HG-KR73	730		_	_	AT305	AT306
			MSMD01	100	□40	AT307	_	_	_
			MSME01			AT307	-	-	_
			MSMD02	200		AT308	AT309	AT311	
	Panasonic	MINAS A5	MSME02	200	□60	AT308	AT309	AT311	_
9	Corporation		MSMD04	400		_	AT310	AT312	_
			MSME04			_	AT310	AT312	-
			MSME08	750	□80	_		AT313	AT314
	Hitachi		MSME08	100				AT313	AT314
	Industrial		ADMA-01L	100	□40	AT301		_	_
		AD	ADMA-02L	200	□60	AT302	AT303	_	_
	Equipment	AD	ADMA-04L	400		_	AT303	AT304	_
	Systems Co., Ltd		ADMA-08L	750	□75	_	_	AT305	AT306
			AR66		□60	AT315	_	_	_
			AR69			AT315	_	_	_
			AR98		□85	_	AT317	AT318	_
1	ORIENTAL	a Schritt	AR911			_	AT317	AT318	_
Schritt-	MOTOR		AS66		□60	AT316	_	_	_
motor	Co., Ltd.		AS69			AT316	_	-	_
	Co., Etc.		AS98		□85	_	AT317	AT318	_
		D''	AS911	-(1)		—	AT317	AT318	_
		RK	RK56 • CRK56 (1)		□60	AT316	-	-	_
Hinweis (1) Gilt fi		CRK	RK59		□85	_	AT317	AT318	_

Hinweis (1) Gilt für den Außendurchmesser Ø8 der Motorwelle.

Anmerkung: Detaillierte Motorspezifikationen finden Sie in dem jeweiligen Katalog des Herstellers.

Tabelle 4 Kupplungsmodelle

Motor-flansch Kupplungsmodelle Hersteller Trägheitsmoment der Kupplung J _c × 10³kg ⋅ m² AT301 UA-25C- 8 × 8 Sakai Manufacturing Co, Ltd 0,290 AT302 UA-30C- 8×14 Sakai Manufacturing Co, Ltd 0,603 AT303 UA-35C-12×14 Sakai Manufacturing Co, Ltd 1,34 AT304 UA-35C-14×15 Sakai Manufacturing Co, Ltd 1,34 AT305 UA-40C-15×19 Sakai Manufacturing Co, Ltd 2,61 AT306 UA-40C-15×19 Sakai Manufacturing Co, Ltd 2,61 AT307 UA-25C- 8× 8 Sakai Manufacturing Co, Ltd 0,290 AT308 UA-30C- 8×11 Sakai Manufacturing Co, Ltd 0,603 AT309 UA-35C-11×12 Sakai Manufacturing Co, Ltd 1,34 AT311 UA-35C-11×15 Sakai Manufacturing Co, Ltd 1,34 AT312 UA-35C-11×15 Sakai Manufacturing Co, Ltd 1,34 AT313 UA-40C-15×19 Sakai Manufacturing Co, Ltd 1,34 AT314 UA-40C-15×19 Sakai Manufacturing Co, Ltd 2,61 AT315 MSTS-25C- 8				
AT302 UA-30C- 8×14 Sakai Manufacturing Co., Ltd 0,603 AT303 UA-35C-12×14 Sakai Manufacturing Co., Ltd 1,34 AT304 UA-35C-14×15 Sakai Manufacturing Co., Ltd 1,34 AT305 UA-40C-15×19 Sakai Manufacturing Co., Ltd 2,61 AT306 UA-40C-15×19 Sakai Manufacturing Co., Ltd 2,61 AT307 UA-25C- 8× 8 Sakai Manufacturing Co., Ltd 0,290 AT308 UA-30C- 8×11 Sakai Manufacturing Co., Ltd 0,603 AT309 UA-35C-11×12 Sakai Manufacturing Co., Ltd 1,34 AT310 UA-35C-11×12 Sakai Manufacturing Co., Ltd 1,34 AT311 UA-35C-11×15 Sakai Manufacturing Co., Ltd 1,34 AT311 UA-35C-11×15 Sakai Manufacturing Co., Ltd 1,34 AT312 UA-35C-11×15 Sakai Manufacturing Co., Ltd 1,34 AT313 UA-40C-15×19 Sakai Manufacturing Co., Ltd 2,61 AT314 UA-40C-15×19 Sakai Manufacturing Co., Ltd 2,61 AT315 MSTS-25C- 8×10 Nabeya Bi-tech Kaisha 0,71 AT316 MSTS-25C- 8× 8 Nabeya Bi-tech Kaisha 2,7		Kupplungsmodelle	Hersteller	
AT303 UA-35C-12×14 Sakai Manufacturing Co., Ltd 1,34 AT304 UA-35C-14×15 Sakai Manufacturing Co., Ltd 1,34 AT305 UA-40C-15×19 Sakai Manufacturing Co., Ltd 2,61 AT306 UA-40C-15×19 Sakai Manufacturing Co., Ltd 2,61 AT307 UA-25C- 8×8 Sakai Manufacturing Co., Ltd 0,290 AT308 UA-30C- 8×11 Sakai Manufacturing Co., Ltd 0,603 AT309 UA-35C-11×12 Sakai Manufacturing Co., Ltd 1,34 AT310 UA-35C-12×14 Sakai Manufacturing Co., Ltd 1,34 AT311 UA-35C-11×15 Sakai Manufacturing Co., Ltd 1,34 AT312 UA-35C-14×15 Sakai Manufacturing Co., Ltd 1,34 AT313 UA-40C-15×19 Sakai Manufacturing Co., Ltd 2,61 AT314 UA-40C-15×19 Sakai Manufacturing Co., Ltd 2,61 AT315 MSTS-25C- 8×8 Nabeya Bi-tech Kaisha 0,71 AT316 MSTS-25C- 8×8 Nabeya Bi-tech Kaisha 2,7	AT301	UA-25C- 8× 8	Sakai Manufacturing Co., Ltd	0,290
AT304 UA-35C-14×15 Sakai Manufacturing Co., Ltd 1,34 AT305 UA-40C-15×19 Sakai Manufacturing Co., Ltd 2,61 AT306 UA-40C-15×19 Sakai Manufacturing Co., Ltd 2,61 AT307 UA-25C- 8× 8 Sakai Manufacturing Co., Ltd 0,290 AT308 UA-30C- 8×11 Sakai Manufacturing Co., Ltd 0,603 AT309 UA-35C-11×12 Sakai Manufacturing Co., Ltd 1,34 AT310 UA-35C-12×14 Sakai Manufacturing Co., Ltd 1,34 AT311 UA-35C-11×15 Sakai Manufacturing Co., Ltd 1,34 AT312 UA-35C-14×15 Sakai Manufacturing Co., Ltd 1,34 AT313 UA-40C-15×19 Sakai Manufacturing Co., Ltd 2,61 AT314 UA-40C-15×19 Sakai Manufacturing Co., Ltd 2,61 AT315 MSTS-25C- 8×10 Nabeya Bi-tech Kaisha 0,71 AT316 MSTS-25C- 8×8 Nabeya Bi-tech Kaisha 0,71 AT317 MSTS-32C-12×14 Nabeya Bi-tech Kaisha 2,7	AT302	UA-30C- 8×14	Sakai Manufacturing Co., Ltd	0,603
AT305 UA-40C-15×19 Sakai Manufacturing Co., Ltd 2,61 AT306 UA-40C-15×19 Sakai Manufacturing Co., Ltd 2,61 AT307 UA-25C- 8× 8 Sakai Manufacturing Co., Ltd 0,290 AT308 UA-30C- 8×11 Sakai Manufacturing Co., Ltd 0,603 AT309 UA-35C-11×12 Sakai Manufacturing Co., Ltd 1,34 AT310 UA-35C-12×14 Sakai Manufacturing Co., Ltd 1,34 AT311 UA-35C-11×15 Sakai Manufacturing Co., Ltd 1,34 AT312 UA-35C-14×15 Sakai Manufacturing Co., Ltd 1,34 AT313 UA-40C-15×19 Sakai Manufacturing Co., Ltd 2,61 AT314 UA-40C-15×19 Sakai Manufacturing Co., Ltd 2,61 AT315 MSTS-25C- 8×10 Nabeya Bi-tech Kaisha 0,71 AT316 MSTS-25C- 8×8 Nabeya Bi-tech Kaisha 0,71 AT317 MSTS-32C-12×14 Nabeya Bi-tech Kaisha 2,7	AT303	UA-35C-12×14	Sakai Manufacturing Co., Ltd	1,34
AT306 UA-40C-15×19 Sakai Manufacturing Co., Ltd 2,61 AT307 UA-25C- 8× 8 Sakai Manufacturing Co., Ltd 0,290 AT308 UA-30C- 8×11 Sakai Manufacturing Co., Ltd 0,603 AT309 UA-35C-11×12 Sakai Manufacturing Co., Ltd 1,34 AT310 UA-35C-12×14 Sakai Manufacturing Co., Ltd 1,34 AT311 UA-35C-11×15 Sakai Manufacturing Co., Ltd 1,34 AT312 UA-35C-14×15 Sakai Manufacturing Co., Ltd 1,34 AT313 UA-40C-15×19 Sakai Manufacturing Co., Ltd 2,61 AT314 UA-40C-15×19 Sakai Manufacturing Co., Ltd 2,61 AT315 MSTS-25C- 8×10 Nabeya Bi-tech Kaisha 0,71 AT316 MSTS-25C- 8×8 Nabeya Bi-tech Kaisha 0,71 AT317 MSTS-32C-12×14 Nabeya Bi-tech Kaisha 2,7	AT304	UA-35C-14×15	Sakai Manufacturing Co., Ltd	1,34
AT307 UA-25C- 8× 8 Sakai Manufacturing Co., Ltd 0,290 AT308 UA-30C- 8×11 Sakai Manufacturing Co., Ltd 0,603 AT309 UA-35C-11×12 Sakai Manufacturing Co., Ltd 1,34 AT310 UA-35C-12×14 Sakai Manufacturing Co., Ltd 1,34 AT311 UA-35C-11×15 Sakai Manufacturing Co., Ltd 1,34 AT312 UA-35C-14×15 Sakai Manufacturing Co., Ltd 1,34 AT313 UA-40C-15×19 Sakai Manufacturing Co., Ltd 2,61 AT314 UA-40C-15×19 Sakai Manufacturing Co., Ltd 2,61 AT315 MSTS-25C- 8×10 Nabeya Bi-tech Kaisha 0,71 AT316 MSTS-25C- 8×8 Nabeya Bi-tech Kaisha 0,71 AT317 MSTS-32C-12×14 Nabeya Bi-tech Kaisha 2,7	AT305	UA-40C-15×19	Sakai Manufacturing Co., Ltd	2,61
AT308 UA-30C- 8×11 Sakai Manufacturing Co., Ltd 0,603 AT309 UA-35C-11×12 Sakai Manufacturing Co., Ltd 1,34 AT310 UA-35C-12×14 Sakai Manufacturing Co., Ltd 1,34 AT311 UA-35C-11×15 Sakai Manufacturing Co., Ltd 1,34 AT312 UA-35C-14×15 Sakai Manufacturing Co., Ltd 1,34 AT313 UA-40C-15×19 Sakai Manufacturing Co., Ltd 2,61 AT314 UA-40C-15×19 Sakai Manufacturing Co., Ltd 2,61 AT315 MSTS-25C- 8×10 Nabeya Bi-tech Kaisha 0,71 AT316 MSTS-25C- 8×8 Nabeya Bi-tech Kaisha 0,71 AT317 MSTS-32C-12×14 Nabeya Bi-tech Kaisha 2,7	AT306	UA-40C-15×19	Sakai Manufacturing Co., Ltd	2,61
AT309 UA-35C-11×12 Sakai Manufacturing Co., Ltd 1,34 AT310 UA-35C-12×14 Sakai Manufacturing Co., Ltd 1,34 AT311 UA-35C-11×15 Sakai Manufacturing Co., Ltd 1,34 AT312 UA-35C-14×15 Sakai Manufacturing Co., Ltd 1,34 AT313 UA-40C-15×19 Sakai Manufacturing Co., Ltd 2,61 AT314 UA-40C-15×19 Sakai Manufacturing Co., Ltd 2,61 AT315 MSTS-25C- 8×10 Nabeya Bi-tech Kaisha 0,71 AT316 MSTS-25C- 8×8 Nabeya Bi-tech Kaisha 0,71 AT317 MSTS-32C-12×14 Nabeya Bi-tech Kaisha 2,7	AT307	UA-25C- 8× 8	Sakai Manufacturing Co., Ltd	0,290
AT310 UA-35C-12×14 Sakai Manufacturing Co., Ltd 1,34 AT311 UA-35C-11×15 Sakai Manufacturing Co., Ltd 1,34 AT312 UA-35C-14×15 Sakai Manufacturing Co., Ltd 1,34 AT313 UA-40C-15×19 Sakai Manufacturing Co., Ltd 2,61 AT314 UA-40C-15×19 Sakai Manufacturing Co., Ltd 2,61 AT315 MSTS-25C- 8×10 Nabeya Bi-tech Kaisha 0,71 AT316 MSTS-25C- 8×8 Nabeya Bi-tech Kaisha 0,71 AT317 MSTS-32C-12×14 Nabeya Bi-tech Kaisha 2,7	AT308	UA-30C- 8×11	Sakai Manufacturing Co., Ltd	0,603
AT311 UA-35C-11×15 Sakai Manufacturing Co., Ltd 1,34 AT312 UA-35C-14×15 Sakai Manufacturing Co., Ltd 1,34 AT313 UA-40C-15×19 Sakai Manufacturing Co., Ltd 2,61 AT314 UA-40C-15×19 Sakai Manufacturing Co., Ltd 2,61 AT315 MSTS-25C- 8×10 Nabeya Bi-tech Kaisha 0,71 AT316 MSTS-25C- 8×8 Nabeya Bi-tech Kaisha 0,71 AT317 MSTS-32C-12×14 Nabeya Bi-tech Kaisha 2,7	AT309	UA-35C-11×12	Sakai Manufacturing Co., Ltd	1,34
AT312 UA-35C-14×15 Sakai Manufacturing Co., Ltd 1,34 AT313 UA-40C-15×19 Sakai Manufacturing Co., Ltd 2,61 AT314 UA-40C-15×19 Sakai Manufacturing Co., Ltd 2,61 AT315 MSTS-25C- 8×10 Nabeya Bi-tech Kaisha 0,71 AT316 MSTS-25C- 8×8 Nabeya Bi-tech Kaisha 0,71 AT317 MSTS-32C-12×14 Nabeya Bi-tech Kaisha 2,7	AT310	UA-35C-12×14	Sakai Manufacturing Co., Ltd	1,34
AT313 UA-40C-15×19 Sakai Manufacturing Co., Ltd 2,61 AT314 UA-40C-15×19 Sakai Manufacturing Co., Ltd 2,61 AT315 MSTS-25C- 8×10 Nabeya Bi-tech Kaisha 0,71 AT316 MSTS-25C- 8×8 Nabeya Bi-tech Kaisha 0,71 AT317 MSTS-32C-12×14 Nabeya Bi-tech Kaisha 2,7	AT311	UA-35C-11×15	Sakai Manufacturing Co., Ltd	1,34
AT314 UA-40C-15×19 Sakai Manufacturing Co., Ltd 2,61 AT315 MSTS-25C- 8×10 Nabeya Bi-tech Kaisha 0,71 AT316 MSTS-25C- 8×8 Nabeya Bi-tech Kaisha 0,71 AT317 MSTS-32C-12×14 Nabeya Bi-tech Kaisha 2,7	AT312	UA-35C-14×15	Sakai Manufacturing Co., Ltd	1,34
AT315 MSTS-25C- 8×10 Nabeya Bi-tech Kaisha 0,71 AT316 MSTS-25C- 8× 8 Nabeya Bi-tech Kaisha 0,71 AT317 MSTS-32C-12×14 Nabeya Bi-tech Kaisha 2,7	AT313	UA-40C-15×19	Sakai Manufacturing Co., Ltd	2,61
AT316 MSTS-25C- 8× 8 Nabeya Bi-tech Kaisha 0,71 AT317 MSTS-32C-12×14 Nabeya Bi-tech Kaisha 2,7	AT314	UA-40C-15×19	Sakai Manufacturing Co., Ltd	2,61
AT317 MSTS-32C-12×14 Nabeya Bi-tech Kaisha 2,7	AT315	MSTS-25C- 8×10	Nabeya Bi-tech Kaisha	0,71
	AT316	MSTS-25C- 8× 8		0,71
AT318 MSTS-40C-14×15 Nabeya Bi-tech Kaisha 9,0	AT317	MSTS-32C-12×14	Nabeya Bi-tech Kaisha	2,7
	AT318	MSTS-40C-14×15	Nabeya Bi-tech Kaisha	9,0

Anmerkung: Detaillierte Angaben zu den Kupplungen finden Sie im jeweiligen Katalog des Herstellers.

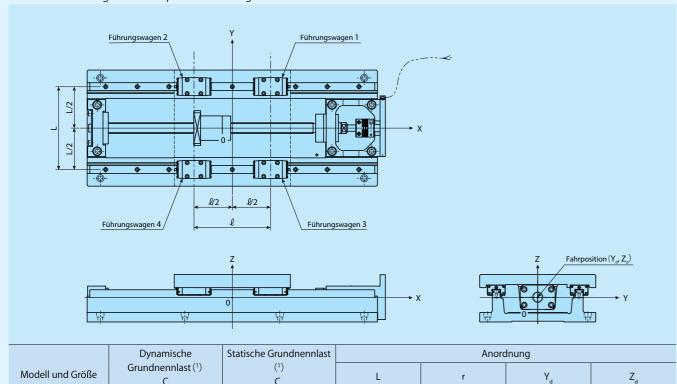
Ausführungen -

Tabelle 5 Genauigkeit Einheit: mm

	ic 5 Geriaaigkeit	Hubl	änge						Limited min
Modell und Größe		X-Achse	Y-Achse	Wiederholg- enauigkeit	Positionier- genauigkeit	Parallelität der Tischbewegung A	Geradheit	Rechtwinkligkeit der XY-Bewegung	Umkehrspiel
		10			0,010	0,010			
		15			0,010	0,010	0,005		
	TSLH120M	20		±0,002	0,015	0,015		_	0,001
αυ		25				·	0,010		
chse		30			0,020	0,020			
er A		15			0,010	0,010			
Ausführung mit einer Achse	TSLH220M	20		±0,002	0,015	0,015	0,005	_	0,001
B		30	00						
Ę.		40	00		0,020	0,020	0,010		
füh		30	00		0,015		0,005	_	0,001
Aus	TSLH320M	40 50		±0,002	0,020	0,015			
		50			0,025	0,025			
	TSLH420M	60		±0,002	0,030	0,030	0,015	_	0,001
		80			0,035	0,035	0,020	1	2,221
		100	100		0,015	0,015	0,005	0,005	
		200	100			0,020		·	
	CTLH120M	200	200	±0,002	0,020	0,025	0,010	0.040	0,001
드		300	200		0.020	0.020	0.025	0,010	
chs		300	300		0,030	0,030	0,025		
<u>e</u>		200	200						
Š		300	200		0,020	0,025	0,010	0,010	
ä	CTLH220M	300	300	±0,002					0,001
ng		400	300		0,030	0,035	0,020	0,015	
ihru		400	400			·	·		
Ausführung mit zwei Achsen		300	300		0,020	0,020	0,005	0,010	
¥		400	300		0,025				0,001
	CTLH320M	400	400	±0,002	-,	0,025	0,010	0,015	
		500	400		0,030				
		500	500		,				

Table 6 Maximale Geschwindigkeit

Motormodell	Modell u	nd Größe	Maximale Geschwindigkeit mm/s		
Motormodell	Ausführung mit einer Achse Ausführung mit zwei Achsen		Steigung 5 mm	Steigung 10 mm	
	TSLH120M	CTLH120M	250	500	
AC-Servo-	TSLH220M	CTLH220M	230	300	
motor	TSLH320M	CTLH320M	224	448	
	TSLH420M	CTETISZOW	224		
Schritt-	TSLH120M	CTLH120M			
motor	TSLH220M	CTLH220M	150	300	
IIIOtol	TSLH320M	CTLH320M			


Anmerkung:

Um die durchführbare, maximale Geschwindigkeit zu ermitteln, müssen die Betriebsbedingungen des zu verwendeten Motors und die Lastbedingungen berücksichtigt werden.

Table 7 Maximale Belastung

Modell und Größe	Spindelsteigung	Maximale Belastung kg		
	mm	Horizontal	Vertikal	
TSLH120M	5	135	28	
ISLITIZUM	10	124	27	
TSLH220M	5	218	30	
I SLITZZOWI	10	187	29	
TSLH320M	5	536	27	
I SLITSZUM	10	254	25	
TSLH420M	5	519	10	
I SLIT4ZOW	10	237	8	

Tabelle 8 Ausführung der Wälzkörper-Linearführung

mm

88

157

240

300

8 330

13 400

28 800

38 300

mm

82

145

210

290

mm

0

0

0

mm

TSLH420M 30 800
Hinweis (¹) Gibt den Wert pro Führungsschlitten an.

TSLH120M

TSLH220M

TSLH320M

Ν

6 260

11 600

25 200

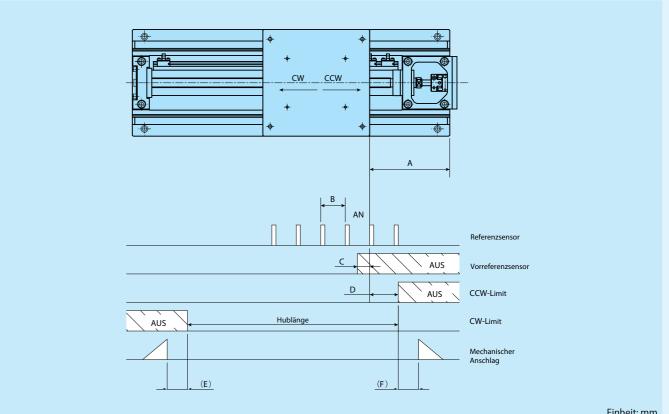
Tabelle 9.1 Ausführungen der Spindel

Modell und Größe	Steigung mm	Schaftdurchmesser mm	Axialspiel mm	Dynamische Grundnennlast C N	Statische Grundnennlast C _o N
TSLH120M	5	15	0	7 070	12 800
ISLITIZUM	10	13	U	7 070	12 800
TSLH220M	5	20	0	8 230	17 510
I JLMZZUWI	10	20	U	10 900	21 700
TSLH320M	5	25	0	16 700	43 500
TSLH420M	10	25	U	15 800	32 700

Tabelle 9.2 Ausführungen der Spindel

Ein	ha	i+.	m	m

rubene 2.2 Musium ungen der Spin	aci	Emiliere, min			
Modell und Größe	Hublänge	Schaftdurchmesser	Gesamtlänge		
	100		256		
	150		306		
TSLH120M	200	15	356		
	250		406		
	300		456		
	150		370		
	200		420		
TSLH220M	250	20	470		
	300		520		
	400		620		
	300		616		
TSLH320M	400	25	716		
	500		816		
	500		916		
TSLH420M	600	25	1 016		
	800		1 216		

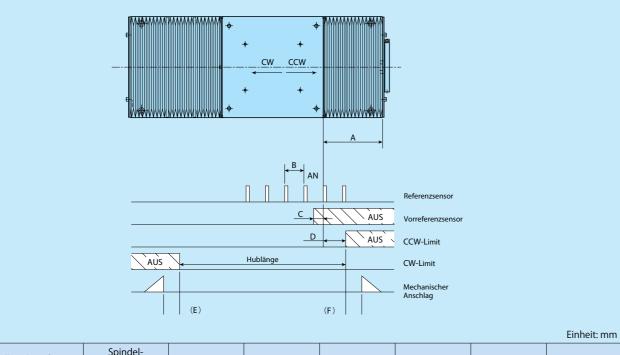

Tabelle 10 Trägheits- und Anlaufmoment des Tisches

Tuben	e To Tragnetts- und All	Taumnoment ac.	Tisches	T				
		Hubl	änge	Trägheitsmome	nt des Tisches J _T	Anlaufm	oment T _s	
	Modell und Größe	mm		×10 ⁻⁵ l	N · m			
		X-Achse	Y-Achse	Steigung 5 mm	Steigung 10 mm	Steigung 5 mm	Steigung 10 mm	
		100		1,2	1,7			
		150		1,4	1,9			
	TSLH120M	20	00	1,5	2,1	0,	07	
		25	50	1,7	2,3			
hse		30	00	1,9	2,5			
Ausführung mit einer Achse		15	50	5,1	6,9			
iner		20	00	5,7	7,5			
ite	TSLH220M	25	50	6,3	8,1	0,	12	
g E		30	00	7,0	8,7			
Ę		40	00	8,2	10			
fä		30	00	20	26			
۸us	TSLH320M	400		23	29	0,	0,20	
		500		26	32			
		50	00	30	39			
	TSLH420M	60	00	33	42	0,	22	
		80	00	39	48			
		100	100	1,8	4,2			
		200	100	2,2	4,5			
	CTLH120M	200	200	2,3	5,1	0,	08	
eu		300	200	2,7	5,5			
chs		300	300	2,8	6,0			
ei A		200	200	7,8	16			
Š		300	200	9,1	17			
m:	CTLH220M	300	300	9,3	18	0,	12	
ng ı		400	300	11	19			
- F		400	400	11	21			
Ausführung mit zwei Achsen		300	300	27	51			
Ą		400	300	30	54			
	CTLH320M	400	400	30	57	0,22	0,25	
		500	400	33	60			
		500	500	34	62			

Anmerkung: Bei Tischen mit zwei Achsen gibt die Abbildung die Werte der X-Achse an. Für die Werte der Y-Achse bitte die Abbildung für die Ausführung mit einer Achse konsultieren.

Ausführung mit Sensoren

Tabelle 11.1 Sensor-Zeittafel (ohne Faltenbälge)

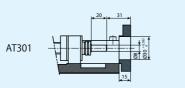


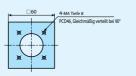
Entitlett, fritti								
Modell und Größe	Spindel- steigung	А	В	С	D	E	F	
TSLH120M	5	50	5	3	30	5,5	4,5	
TJLITIZUWI	10	50	10	7	30	د, د	4,5	
TSLH220M	5	45	5	3	30	14	10	
TSLITZZUWI	10	40	10	7		12	10	
TSLH320M	5	45	5	3	30	20	15	
ISLESZUM	10	40	10	7	30	20	15	
TSLH420M	5	45	5	3	30	18	15	
	10	40	10	7	30	10	13	

Anmerkungen

- 1. Die Ausführungen der jeweiligen Sensoren finden Sie im Abschnitt Sensorausführung unter Allgemeine Erläuterung.
- 2. Die Werte der jeweiligen Achsen sind bei Tischen mit zwei Achsen die gleichen wie bei Tischen mit einer Achse.

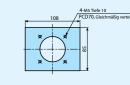
Tabelle 11.2 Sensor-Zeittafel (Mit Faltenbälgen)

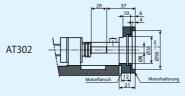

							Littlett. IIIIII
Modell und Größe	Spindel- steigung	А	В	С	D	E	F
TSLH120M-100/J	5	57,5	5	3	30	5	5
13LH120W-100/J	10	27,5	10	7	30	3	3
TSLH120M-150/J	5	62,5	5	3	30	5	5
13L11120W 130/3	10	02,3	10	7	30	,	J
TSLH120M-200/J	5	67,5	5	3	30	5	5
13L11120W1 200/3	10	07,5	10	7	50		
TSLH120M-250/J	5	72,5	5	3	30	5	5
	10	. 2,5	10	7			
TSLH120M-300/J	5	80	5	3	30	5	5
	10	00	10	7	30	-	<u> </u>
TSLH220M-150/J	5	65	5	3	30	7	5
	10	03	10	7	30	5	, and the second
TSLH220M-200/J	5	70	5	3	30	7	5
13211220111 20073	10	, ,	10	7	50	5	
TSLH220M-250/J	5	80	5	3	30	7	5
. 52226.11	10	00	10	7	30	5	
TSLH220M-300/J	5	85	5	3	30	7	5
132,1220,11 300,3	10	03	10	7	30	5	
TSLH220M-400/J	5	95	5	3	30	7	5
	10	,,,	10	7	30	5	J J
TSLH320M-300/J	5	80	5	3	30	5	5
	10	00	10	7	30	3	J J
TSLH320M-400/J	5	90	5	3	30	5	5
.52132011 100/3	10	,,,	10	7	50		, ,
TSLH320M-500/J	5	95	5	3	30	5	5
.52132011 300/3	10	,,,	10	7	50		
TSLH420M-500/J	5	90	5	3	30	5	5
.5211120111 500/5	10	,,,	10	7	50		, in the second
TSLH420M-600/J	5	95	5	3	30	5	5
	10		10	7			
TSLH420M-800/J	5	115	5	3	30	5	5

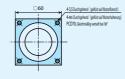

Anmerkungen

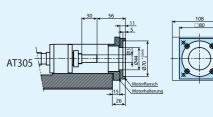
- 1. Die Ausführungen der jeweiligen Sensoren finden Sie im Abschnitt Sensorausführung unter Allgemeine Erläuterung.
- 2. Die Werte der jeweiligen Achsen sind bei Tischen mit zwei Achsen die gleichen wie bei Tischen mit einer Achse.

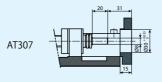
Abmessungen des Motorflansches

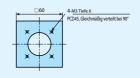

TSLH120M, CTLH120M

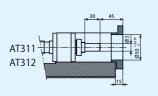


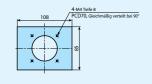


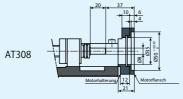


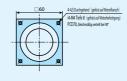

AT304 ₩

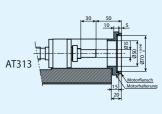


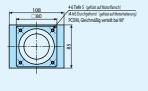


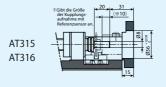


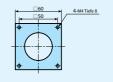


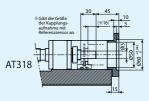


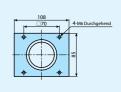


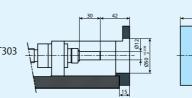


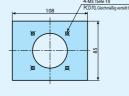


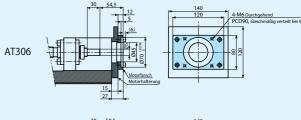


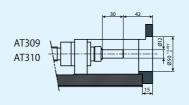


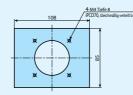


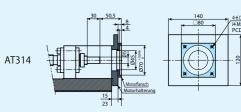


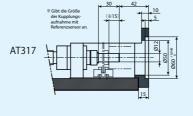


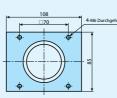

TSLH420M, CTLH420M

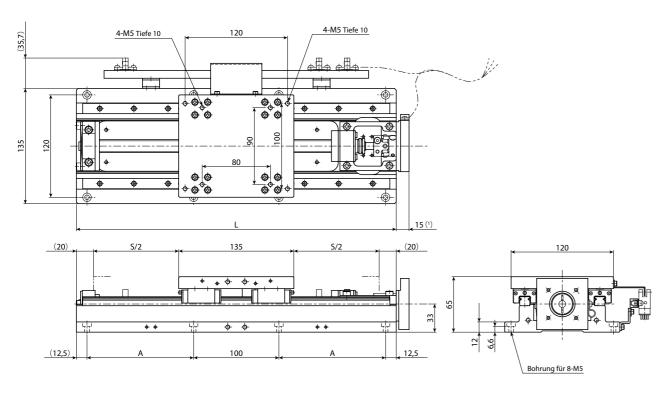



TSLH220M, CTLH220M

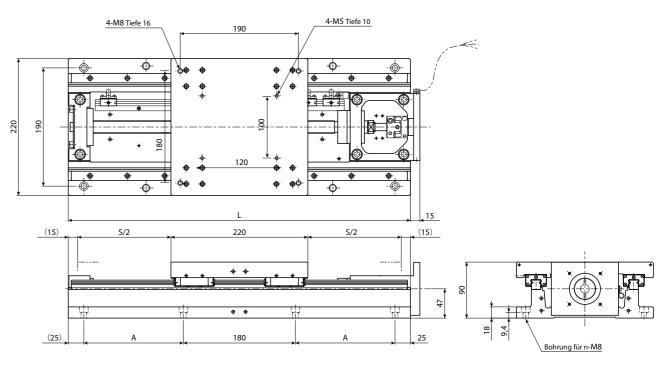








TSLH120M

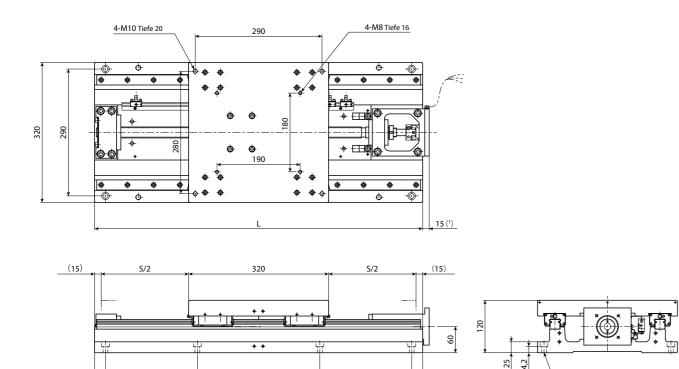


Einheit: mm

Produktbezeichnung	Hublänge S	Gesamtlänge L	Gewindebohrungen des Tisches A	Masse (Ref.) kg
TSLH120M-100	100	275	75	10
TSLH120M-150	150	325	100	11
TSLH120M-200	200	375	125	12
TSLH120M-250	250	425	150	13
TSLH120M-300	300	475	175	14

Hinweis (¹) Bei der Auswahl von AT302 oder AT308 werden 21 mm angewendet.

TSLH220M

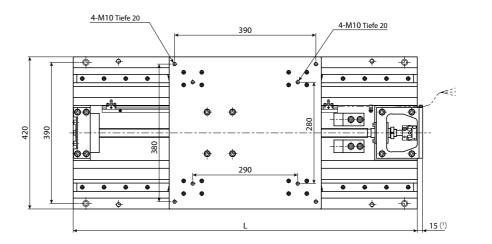

Einheit: mm

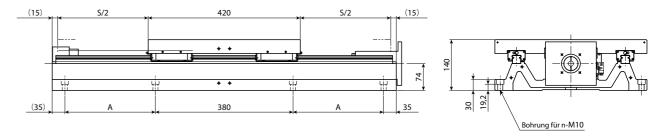
					LITTIEIL, ITIIII
Dradukthozaichnung	Hublänge	Gesamtlänge	Gewindebohrungen des	Tisches	Masse (Ref.)
Produktbezeichnung	S	L	A (Anzahl Bohrungen×Abstand)	n	kg
TSLH220M-150	150	400	85	8	32
TSLH220M-200	200	450	110	8	34
TSLH220M-250	250	500	135	8	36
TSLH220M-300	300	550	160	8	38
TSLH220M-400	400	650	210 (2×105)	12	42
(TSLH220M-500)	500	750	260 (2×130)	12	47
(TSLH220M-600)	600	850	310 (2×155)	12	51

Anmerkung: Sollten Sie an einem Produkt interessiert sein, dessen Produktbezeichnung in () aufgeführt wird, kontaktieren Sie bitte **IKO**.

IK Präzisionspositioniertisch LH

TSLH320M



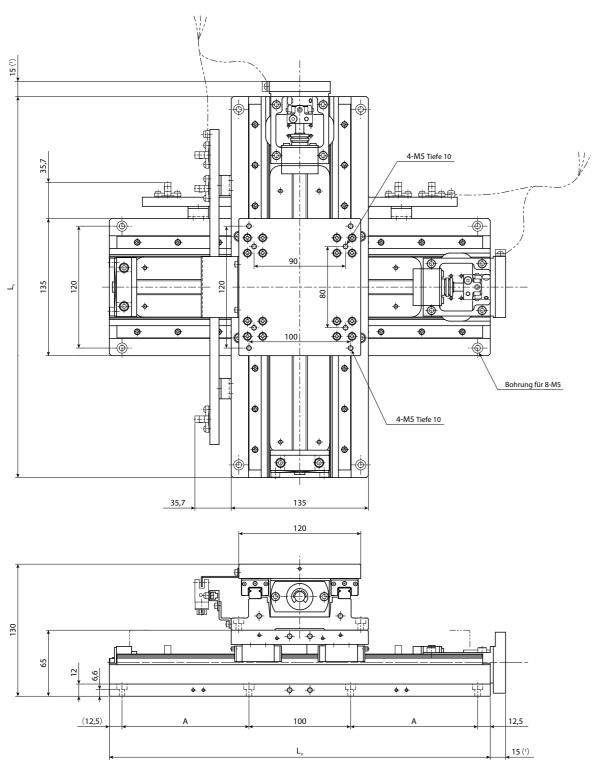

neit:	

Produktbezeichnung	Hublänge	Gesamtlänge	Gewindebohrungen des	Tisches	Masse (Ref.)
Froduktbezeichnung	S	L	A (Anzahl Bohrungen×Abstand)	n	kg
TSLH320M- 300	300	650	160	8	100
TSLH320M- 400	400	750	210	8	109
TSLH320M- 500	500	850	260	8	118
(TSLH320M- 600)	600	950	310	8	127
(TSLH320M- 800)	800	1 150	410 (2×205)	12	146
(TSLH320M-1000)	1 000	1 350	510 (2×255)	12	164

Hinweis (1) Bei der Auswahl von AT305 werden 26 mm angewendet. Bei der Auswahl von AT313 werden 20 mm angewendet. Anmerkung: Sollten Sie an einem Produkt interessiert sein, dessen Produktbezeichnung in (1) aufgeführt wird, kontaktieren Sie bitte **IKI**.

TSLH420M

Einheit: mm

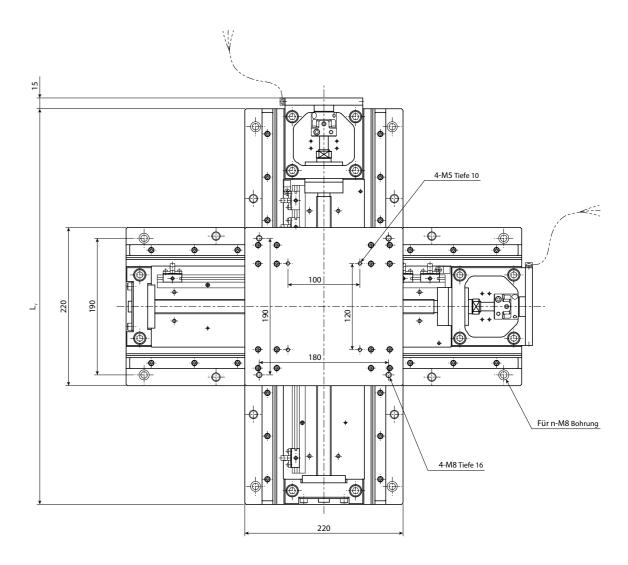

Produktbezeichnung	Hublänge S	Gesamtlänge L	Gewindebohrungen A (Anzahl Bohrungen × Abstand)	des Tisches n	Masse (Ref.) kg
TSLH420M- 500	500	500 950		8	176
TSLH420M- 600	600	1 050	300	8	188
TSLH420M- 800	800	1 250	400 (2×200)	12	212
(TSLH420M-1000)	1 000	1 450	500 (2×250)	12	237

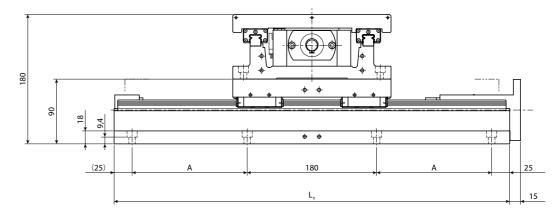
Hinweis (¹) Sie geben nur die Maße der Motorhalterung an. Bei der Auswahl von AT306 werden 27 mm angewendet. Bei der Auswahl von AT314 werden 23 mm angewendet.

Anmerkung: Sollten Sie an einem Produkt interessiert sein, dessen Produktbezeichnung in () aufgeführt wird, kontaktieren Sie bitte **IKO**.

IIC Präzisionspositioniertisch LH

CTLH120M

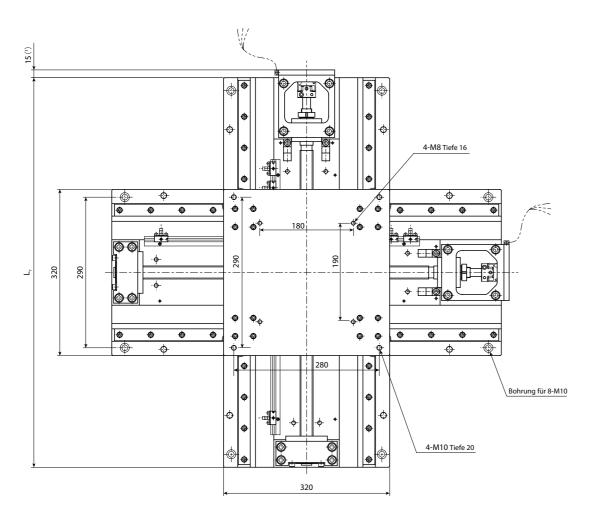

F	Fin	heit:	mm

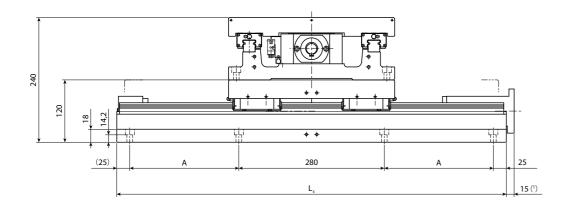

Lilliet, filli											
Produktbezeichnung	Hublänge S		Gesam	ıtlänge	Gewindebohrungen des Tisches	Masse (Ref.)					
Produktbezeichnung	X-Achse	Y-Achse	L _x	L _y	A	kg					
CTLH120M-1010	100	100	275	275	75	20					
CTLH120M-2010	200	100	375	275	125	22					
CTLH120M-2020	200	200	375	375	125	24					
CTLH120M-3020	300	200	475	375	175	26					
CTLH120M-3030	300	300	475	475	175	28					

Hinweis (1) Bei der Auswahl von AT302 oder AT308 werden 21 mm angewendet.

Anmerkung: Da eine Kombination aus einer Hublänge, die nicht oben aufgeführt wird und einem Tisch mit anderer Größe möglich ist, kontaktieren Sie bitte **IKU**

CTLH220M

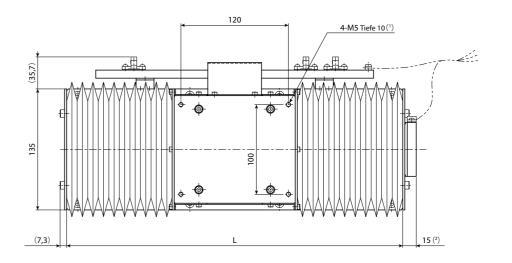


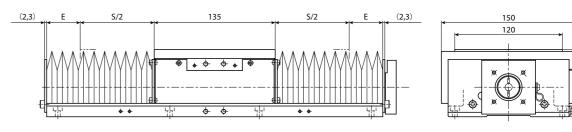

Einheit: mm

	Hublänge S		Gesamtlänge		Gewindebohrungen des	Masse (Ref.)				
Produktbezeichnung	X-Achse	Y-Achse	L _x	L _y	A (Anzahl Bohrungen×Abstand)	n	kg			
CTLH220M-2020	200	200	450	450	110	8	67			
CTLH220M-3020	300	200	550	450	160	8	71			
CTLH220M-3030	300	300	550	550	160	8	76			
CTLH220M-4030	400	300	650	550	210 (2×105)	12	80			
CTLH220M-4040	400	400	650	650	210 (2×105)	12	84			

Anmerkung: Da eine Kombination aus einer Hublänge, die nicht oben aufgeführt wird und einem Tisch mit anderer Größe möglich ist, kontaktieren Sie bitte

CTLH320M


Finheit: mm


Lillielt, Illii											
Produktbezeichnung	Hublänge S		Gesam	ıtlänge	Gewindebohrungen des Tisches	Masse (Ref.)					
Froduktbezeichnung	X-Achse	Y-Achse	L _x	L _y	A	kg					
CTLH320M-3030	300	300	650	650	160	199					
CTLH320M-4030	400	300	750	650	210	209					
CTLH320M-4040	400	400	750	750	210	218					
CTLH320M-5040	500	400	850	750	260	227					
CTLH320M-5050	500	500	850	850	260	236					

Hinweis (1) Bei der Auswahl von AT305 werden 26 mm angewendet. Bei der Auswahl von AT313 werden 20 mm angewendet.

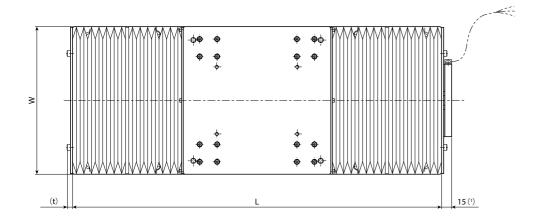
Anmerkung: Da eine Kombination aus einer nicht oben aufgeführten Hublänge und einem Tisch mit anderer Größe möglich ist, kontaktieren Sie bitte **IKU**.

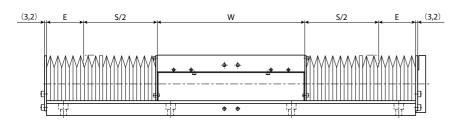
TSLH120M···/J Tisch mit Faltenbälgen

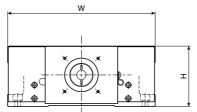
Einheit: mm

Produktbezeichnung	Hublänge S	Gesamtlänge L	E	Masse (Ref.) kg
TSLH120M-100/J	85	275	27,5	13
TSLH120M-150/J	125	325	32,5	14
TSLH120M-200/J	165	375	37,5	15
TSLH120M-250/J	205	425	42,5	16
TSLH120M-300/J	240	475	50,0	17

Hinweise (1) Wenn die Befestigungsschraube zu stark angezogen wird, kann die Laufleistung des Führungsschlittens beeinträchtigt werden, weshalb nie eine Schraube eingeführt werden sollte, die länger als die Durchgangsbohrung ist.


(2) Bei der Auswahl von AT302 oder AT308 werden 21 mm angewendet.

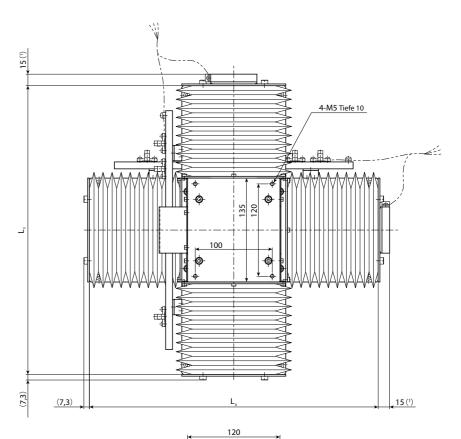

Anmerkungen 1. Bei Verwendung in einer vertikalen Achse unterscheiden sich die Maße der Faltenbälge, kontaktieren Sie daher **IKU**.

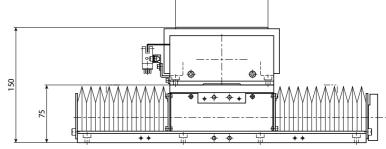

2. Für die Einbaumaße des Gestells, siehe Maßtabelle für TSLH120M.

IIC Präzisionspositioniertisch LH

TSLH220M···/J, TSLH320M···/J, TSLH420M···/J Tisch mit Faltenbälgen

Einheit: mm


								LITTICIC, ITIIII
	Produktbezeichnung	Hublänge S	Gesamtlänge L	W	Н	E	t	Masse (Ref.) kg
	TSLH220M- 150/J	110	400			35		33
	TSLH220M- 200/J	150	450			40	8,2	36
	TSLH220M- 250/J	180	500			50		38
Ī	TSLH220M- 300/J	220	550	220	90	55		40
	TSLH220M- 400/J	300	650			65		44
	(TSLH220M- 500/J)	370	750			80		49
Ī	(TSLH220M- 600/J)	440	850			95		53
	TSLH320M- 300/J	230	650			50		104
	TSLH320M- 400/J	310	750			60		113
	TSLH320M- 500/J	400	850	320	120	65		129
Ī	(TSLH320M- 600/J)	480	950	320	120	75	9,2	131
	(TSLH320M- 800/J)	640	1 150			95		151
	(TSLH320M-1000/J)	800	1 350			115		169
Ī	TSLH420M- 500/J	410	950			60		183
	TSLH420M- 600/J	500	1 050	420	140	65	10.5	195
	TSLH420M- 800/J	660	1 250	420	140	85	10,5	219
	(TSLH420M-1000/J)	830	1 450			100		244


Hinweis (1) Bei der Auswahl von AT305 werden 26 mm angewendet. Bei der Auswahl von AT313 werden 20 mm angewendet.

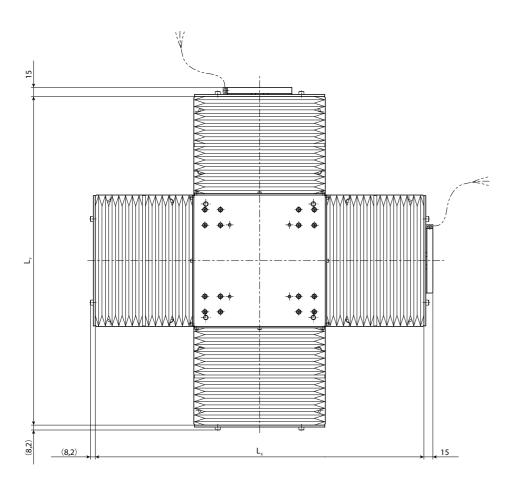
Anmerkungen

- 1. Bei Verwendung in einer vertikalen Achse unterscheiden sich die Maße der Faltenbälge, kontaktieren Sie daher **IK ..**
- 2. Sollten Sie an einem Produkt interessiert sein, dessen Produktbezeichnung in () aufgeführt wird, kontaktieren Sie bitte **IKI**.
- 3. Für die Einbaumaße der Führungsschiene, siehe Maßtabelle für TSLH220M, TSLH320M, and TSLH420M.

CTLH120M···/J Tisch mit Faltenbälgen

Einheit: mm

Produktbezeichnung	Hublä	nge S	Gesamtlänge	e des Tisches	Masse (Ref.)		
Froduktbezeichnung	X-Achse	Y-Achse	L _x	L _y	kg		
CTLH120M-1010/J	85	85	275	275	25		
CTLH120M-2010/J	165	85	375	275	27		
CTLH120M-2020/J	165	165	375	375	29		
CTLH120M-3020/J	240	165	475	375	31		
CTLH120M-3030/J	240	240	475	475	33		

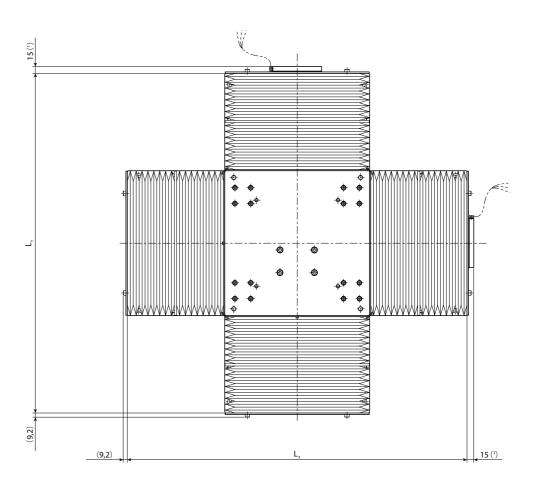

Hinweis (1) Bei der Auswahl von AT302 oder AT308 werden 21 mm angewendet.

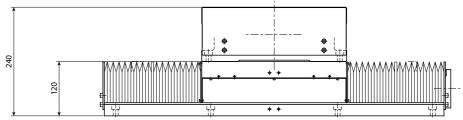

Anmerkungen 1. Bei Verwendung in einer vertikalen Achse unterscheiden sich die Maße der Faltenbälge, kontaktieren Sie daher IKU.

2. Für die Einbaumaße der Führungsschiene, siehe Maßtabelle für TSLH120M.

IIC Präzisionspositioniertisch LH

CTLH220M···/J Tisch mit Faltenbälgen

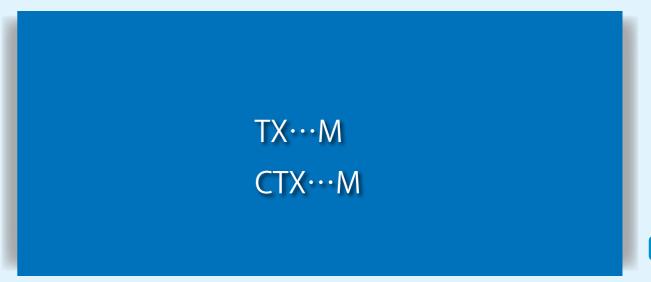

Einheit: mm										
Dua dudah amai ah musa	Hublänge S		Gesamtlänge	e des Tisches	Masse (Ref.)					
Produktbezeichnung	X-Achse	Y-Achse	L _x	L,	kg					
CTLH220M-2020/J	150	150	450	450	71					
CTLH220M-3020/J	220 150		550	450	75					
CTLH220M-3030/J	220	220	550	550	80					
CTLH220M-4030/J	300	220	650	550	84					
CTLH220M-4040/J	300	300	650	650	88					


Anmerkungen

1. Bei Verwendung in einer vertikalen Achse unterscheiden sich die Maße der Faltenbälge, kontaktieren Sie daher **IK** ...

2. Für die Einbaumaße der Führungsschiene, siehe Maßtabelle für TSLH220M.

CTLH320M···/J Tisch mit Faltenbälgen


Einheit: mm

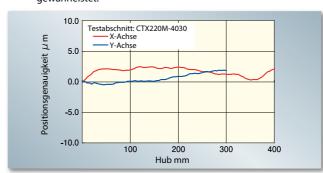
Produktbezeichnung	Hublä	nge S	Gesamtlänge	e des Tisches	Masse (Ref.)		
Froduktbezeichnung	X-Achse	Y-Achse	L _x	L _Y	kg		
CTLH320M-3030/J	230	230	650	650	207		
CTLH320M-4030/J	310	310 230		650	216		
CTLH320M-4040/J	310	310	750	750	226		
CTLH320M-5040/J	400	310	850	750	235		
CTLH320M-5050/J	400	400	850	850	244		

Hinweis (1) Bei der Auswahl von AT305 werden 26 mm angewendet. Bei der Auswahl von AT313 werden 20 mm angewendet.

Anmerkungen 1. Bei Verwendung in einer vertikalen Achse unterscheiden sich die Maße der Faltenbälge, kontaktieren Sie daher **IKO**.

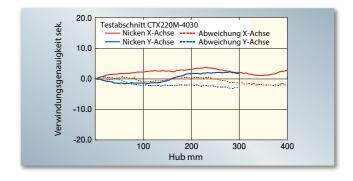
2. Für die Einbaumaße der Führungsschiene, siehe Maßtabelle für TSLH320M.

II-143


Vorteile

Hochpräzisionstisch mit Rollenumlaufführung

Hochgenauer, hochsteifer auf dem Präzisionspositioniertisch LH basierender Positioniertisch mit einer Positioniergenauigkeit, die dank einer eingebauten C-Lube-Rollenumlaufführung Super MX und gründlicher Prüfung der Genauigkeit jeder Komponente, fast so hoch wie bei einem luftgelagertem Tisch ist.


Hohe Positioniergenauigkeit und Auflösung durch eingebauten hochgenauen Linear Encoder

Ein geschlossener Regelkreis wurde konfiguriert und die Positioniergenauigkeit des gesamten Hubs wird durch direktes Feedback der Positionsinformationen mithilfe eines hochgenauen Linear Encoders mit einer Auflösung von 0,016 μm gewährleistet.

Ultimativ hohe Laufleistung dank Rollenumlaufführung

Die ultimative Laufgenauigkeit wird dadurch erzielt, dass die mit hoher Genauigkeit verarbeiteten und montieren Bauteile mit der C-Lube Rollenumlaufführung Super MX kombiniert werden, welche die höchste Laufleistung einer Rollenumlaufführung erzielt.

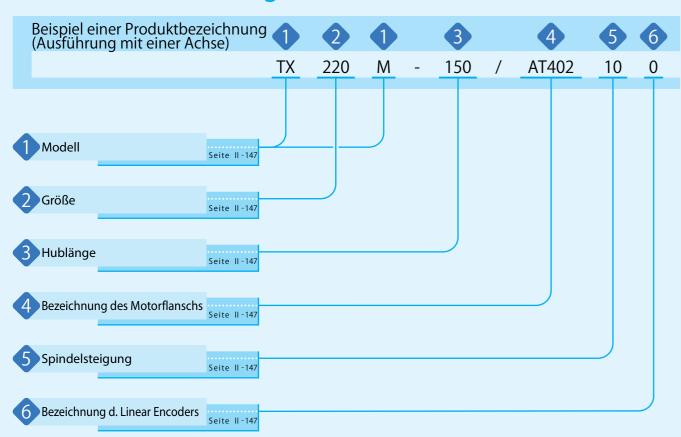
● Einfache Systemkonfigurierung

Die Systemkonfigurierung ist einfach gestaltet und es kann eine Raumeinsparung und Kostenreduzierung des Geräts erzielt werden, da, im Gegensatz zu einem luftgelagerten Tisch kein Luftversorgungssystem für den Antrieb benötigt wird.

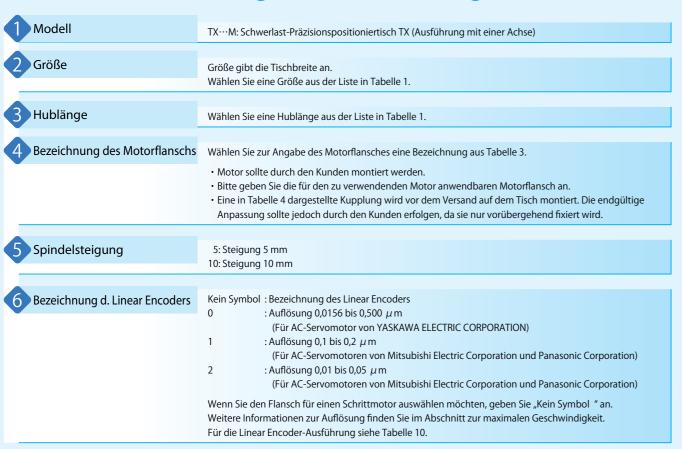
Variation

Form	M. J.II J.C. 70.	Tischbreite			H	Hubläng	e (mm)			
Form	Modell und Größe	(mm)	100	150	200	250	300	400	500	600	800
120 mm	TX120M	120	☆	☆	☆	☆	☆	_	_	_	_
220 mm	TX220M	220	_	☆	☆	☆	☆	☆	_	_	_
320 mm	TX320M	320	_	_	_	_	☆	☆	☆	_	_
420 mm	TX420M	420	_	_	_	_	_	_	☆	☆	☆

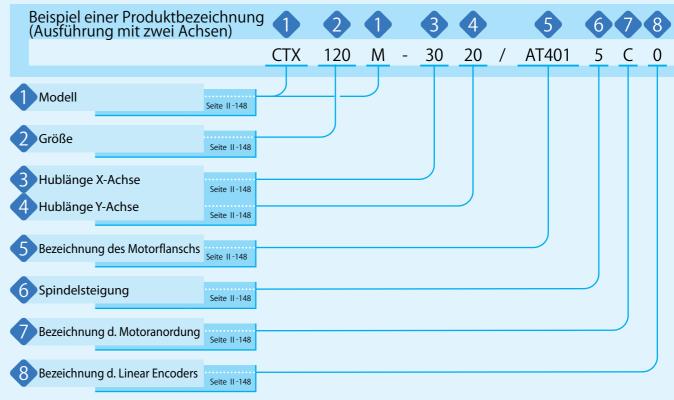
Wichtige Produktbeschreibungen


۸ =	-ф-		<u> </u>		
	Antriebsmethode		Präzisionsspindel		
	Wälzkörper-Linearführu	ıng	Rollenumlaufführung)		
	Eingebaute Schmierp	latte	Eingebaute "C-Lube"-Schmierplatte		
	Tisch- und Gestellmaterial		Gusseisen		
	Sensor		Standardm	äßig enthalten	
	-ф-		-		

Genauigkeit


	Einheit: mm
Wiederholgenauigkeit	±0,0005~0,0010
Positioniergenauigkeit	0,003~0,020
Leerlauf	0,001
Parallelität der Tischbewegung A	0,005~0,011
Parallelität der Tischbewegung B	-
Verwindungsgenauigkeit	5∼11Sekunden
Geradheit	0,003~0,008
Umkehrspiel	-

1N=0,102kgf=0,2248lbs.


Produktbezeichnung

Produktbezeichnung und Ausführung

Produktbezeichnung

Produktbezeichnung und Ausführung.

1 Modell	CTX···M: Schwerlast-Präzisionspositioniertisch TX (Ausführung mit zwei Achsen)		
2 Größe	Größe gibt die Tischbreite an. Wählen Sie eine Größe aus der Liste in Tabelle 2. Tische mit unterschiedlichen Größen können ebenfalls kombiniert werden.		
3 Hublänge X-Achse 4 Hublänge Y-Achse	Wählen Sie eine Hublänge aus der Liste in Tabelle 2. Hublängen der jeweiligen Achsen werden in cm angegeben. Für X- und Y-Achse können unterschiedliche Hublängen angegeben werden.		

- Bezeichnung des Motorflanschs Wählen Sie zur Angabe des Motorflansches eine Bezeichnung aus Tabelle 3.
 - Motor sollte durch den Kunden montiert werden.
 - Bitte geben Sie die für den zu verwendenden Motor anwendbaren Motorflansch an.
 - Eine in Tabelle 4 dargestellte Kupplung wird vor dem Versand auf dem Tisch montiert. Die endgültige Anpassung sollte jedoch durch den Kunden erfolgen, da sie nur vorübergehend fixiert wird.
- 5: Steigung 5 mm
 10: Steigung 10 mm
- Bezeichnung d. Motoranordung

 C: Umgekehrte Konfiguration

 Standardkonfiguration: Eine Anordnung, bei der die X-Achsen-Motorseite auf der Vorderseite und die Y-Achsen-Motorseite auf der rechten Seite angebracht ist.

Kein Symbol: Standardkonfiguration

Y-Achsen-Motorseite auf der rechten Seite angebracht ist. Umgekehrte Konfiguration: Eine Anordnung, bei der die X-Achsen-Motorseite auf der Vorderseite und die

Y-Achsen-Motorseite auf der linken Seite angebracht ist. Geben Sie "Kein Symbol" an, wenn eine Hublänge von 200 mm für die Y-Achse für CTX220M ausgewählt

Geben Sie "Kein Symbol" an, wenn eine Hublange von 200 mm für die Y-Achse für CTX220M ausgewählt wurde.

- Bezeichnung d. Linear Encoders

 Kein Symbol: Bezeichnung des Linear Encoders

 0: Auflösung 0,0156 bis 0,500 μm (Für AC-Servomotor von YASKAWA ELECTRIC CORPORATION)
 - 1 : Auflösung 0,1 bis 0,2 µm (Für AC-Servomotoren von Mitsubishi Electric Corporation und Panasonic Corporation)
 - : Authorized by τ bis 0,2 μ m (Fur Ac-servolnotoren von Mitsubisin Electric Corporation und Parlasonic Corporation)
 - 2 : Auflösung 0,01 bis 0,05 μ m (Für AC-Servomotoren von Mitsubishi Electric Corporation und Panasonic Corporation)

Wenn Sie den Flansch für einen Schrittmotor auswählen möchten, geben Sie "Kein Symbol" an. Weitere Informationen zur Auflösung finden Sie im Abschnitt zur maximalen Geschwindigkeit. Für die Linear Encoder-Ausführung siehe Tabelle 10.

Tabelle 1 Größen und Hublängen

	Modell und Größe	Tischbreite	Hublänge			
		mm	mm			
	TX120M	120	100, 150, 200, 250, 300			
	TX220M	220	150, 200, 250, 300, 400			
	TX320M	320	300, 400, 500			
	TX420M	420	500, 600, 800			

Tabelle 2 Größen, Maße der Tischbreite und Hublängen

Modell und Größe	Tischbreite	Hublänge mm		
	mm	X-Achse	Y-Achse	
		100	100	
CTX120M	120	200	100	
CIXIZUM		200	200	
		300	200	
	220	200	200	
CTX220M		300	200	
CTAZZOW		300	300	
		400	300	

Tabelle 3 Ausführung des Motorflansches

Zu verwendende Motormodelle Motorflansch									
Art	Hersteller	Baureihe			Flansch- größe mm	TX120M CTX120M	TX220M CTX220M	TX320M	TX420M
	YASKAWA		SGMAV-02A	200		AT401	_	_	_
	ELECTRIC	Σ-V	SGMAV-04A	400	□60	_	AT402	_	_
	CORPORATION	Z-V	SGMAV-06A	550		_	_	AT403	_
	CONFONATION		SGMAV-08A	750	□80	1	-	-	AT404
AC-	Mitsubishi Electric		HF-KP23, HG-KR23	200	□60	AT401	_	_	_
Servomotor	Corporation	J3, J4	HF-KP43, HG-KR43	400		_	AT402	AT403	_
			HF-KP73, HG-KR73	750	□80	_	-	-	AT404
	Panasonic Corporation	MINAS A5	MSME02	200	□60	AT405	1	-	_
			MSME04	400		1	AT406	AT407	_
			MSME08	750	□80	-	-	_	AT408
			AR66		□60	AT409	-	-	_
			AR69			AT409	1	1	_
			AR98		- □85	1	AT411	AT412	_
	ORIENTAL	a Schritt	AR911			_	AT411	AT412	_
Schrittmotor	MOTOR	a scillit	AS66		□60	AT410	-	-	_
Schilttinotol	Co., Ltd.		AS69			AT410	1	1	_
	Co., Ltd.		AS98		□85	_	AT411	AT412	_
			AS911			-	AT411	AT412	_
		RK	RK56 • RKS56	5	□60	AT410	_	-	-
		INN	RK59 • RKS59	9	□85	_	AT411	AT412	_

Anmerkung: Detaillierte Motorspezifikationen finden Sie in dem jeweiligen Katalog des Herstellers.

Tabelle 4 Kupplungsmodelle

Motorflansch	Kupplungsmodelle	Hersteller	Trägheitsmoment der Kupplung J _c ×10 ⁻⁵ kg • m²			
AT401	RA-30C- 8×14	Sakai Manufacturing Co., Ltd	0,281			
AT402	RA-35C-12×14	Sakai Manufacturing Co., Ltd	0,847			
AT403	RA-35C-14×15	Sakai Manufacturing Co., Ltd	0,847			
AT404	RA-40C-15×19	Sakai Manufacturing Co., Ltd	1,365			
AT405	RA-30C- 8×11	Sakai Manufacturing Co., Ltd	0,281			
AT406	RA-35C-12×14	Sakai Manufacturing Co., Ltd	0,847			
AT407	RA-35C-14×15	Sakai Manufacturing Co., Ltd	0,847			
AT408	RA-40C-15×19	Sakai Manufacturing Co., Ltd	1,365			
AT409	RA-30C- 8×10	Sakai Manufacturing Co., Ltd	0,281			
AT410	RA-30C- 8× 8	Sakai Manufacturing Co., Ltd	0,281			
AT411	RA-35C-12×14	Sakai Manufacturing Co., Ltd	0,847			
AT412	RA-35C-14×15	Sakai Manufacturing Co., Ltd	0,847			

Anmerkung: Detaillierte Angaben zu den Kupplungen finden Sie im jeweiligen Katalog des Herstellers.

Ausführungen -

Tabelle 5 Genauigkeit

Tabelle 5 Genauigkeit Einheit: mm							Einheit: mm			
Modell und Größe		Hubl X-Achse	änge Y-Achse	Wiederhol- genauigkeit	Positionier- genauigkeit	Leer- lauf(1)	Parallelität der Tischbewegung A	Verwindungs- genauigkeit (2) sek.	Geradheit vertikal Geradheit horizontal	Rechtwinkligkeit der XY-Bewegung
			00 50		0,003 (0.006)		0,005	5	0,003	
	TX120M		00	±0,0005	(0.000)	0,001				_
	TATZOW		50	(±0,001)	0,004	0,001	0,006	6	0,004	
			00	-	(0.008)		0,000	Ĭ	0,001	
Ausführung mit einer Achse		15	50		0,003 (0.006)		0,005	5	0,003	
	TX220M	25	00 50	±0,0005 (±0,001)	0,004 (0.008)	0,001	0,006	6	0,004	_
			00		0,005 (0.013)		0,007	7	0,005	
ührung		30	00	±0,0005 (±0,001)	0,004 (0.008)		0,006	6	0,004	
Ausf	TX320M		00		0,005	0,001	0,007	7	0,005	_
		50	00		(0.013)		.,		.,	
		50	00	±0,0005 (±0,001)	0,005 (0,013)	0,001	0,007	7	0,005	
	TX420M	60	00		0,006 (0,016)		0,008	8	0,006	_
		80	00		0,008 (0,020)		0,009	9	0,008	
sen		100	100	1.0.0005	0,005 (0,007)					0,005
Ach	CTX120M	200	100	±0,0005 (±0,001)	0.005	0,001	0,008	8	0,005	
ĕ.		200	200	(±0,001)	0,005 (0,010)					0,010
it Z		300	200		(0,010)					
g		200	200		0,006			9		0,005
I I	CTV-2224	300	200	±0,0005	(0,010)	0.004	0,009		0,006	
sfüh	CTX220M	300	300	(±0,001)		0,001				0,010
Ausführung mit zwei Achsen		400	300		0,008 (0,010)		0,011	11	0,008	

Hinweis (1) Wenn kein Linear Encoder verwendet wird, gibt dies den Wert für das Umkehrspiel an.
(2) Dies gibt die Genauigkeit beim Kippen und Gieren an.

Anmerkung: Die Werte in () geben Werte ohne Linear Encoder an.

Tabelle 6 Maximale Geschwindigkeit, die unter Verwendung eines Motors von YASKAWA ELECTRIC CORPORATION erzielt wird (mit Linear Encodern)

Auflösung	Maximale Gesch	windigkeit mm/s	Serielle Wandlereinheit (1)	Linaay Fa aa day	
μ m/Puls	Steigung 5 mm	Steigung 10 mm	Serielle Waridiereinneit (*)	Linear Encoder	
0,0156	62,5	62,5			
0,0312	125	125		LIP581 HEIDENHAIN K.K.	
0,0625	250 (224)	250 (224)	JZDP-D003-000-E YASKAWA ELECTRIC		
0,125	250 (224)	500 (448)	CORPORATION		
0,250	250 (224)	500 (448)			
0,500	_	500 (448)			

Hinweis (1) Serielle Wandlereinheit ist angebracht.

Anmerkungen

- 1. ln()angegebene Werte gelten für TX320M und TX420M.
- 2. Die durchführbare maximale Geschwindigkeit hängt von den Belastungsbedingungen ab.
- 3. Um die maximale Geschwindigkeit zu ändern, muss die Auflösung durch Einstellen des elektronischen Getriebes für den Treiber geändert werden.

Tabelle 7 Maximale Geschwindigkeit, die unter Verwendung eines Motors von Panasonic Corporation erzielt wird (mit Linear Encoder)

Auflösung	Maximale Gesch	windigkeit mm/s	Linear Encoder	Linear Encoder	
μ m/Puls	Steigung 5 mm	Steigung 10 mm	Signalwandlereinheit (1)	Linear Ericoder	
0,01	26,4	26,4			
0,02	52	52	APE371 [TTL×50]	LIP581	
0,04	104	104	HEIDENHAIN K.K.		
0,05	132	132		HEIDENHAIN K.K.	
0,1	250 (224)	264	APE371 [TTL×10]		
0,2	250 (224)	500 (448)	HEIDENHAIN K.K.		

Hinweis (1) Eine der Auflösung entsprechende Linear Encoder-Signalwandlereinheit ist angebracht.

Anmerkungen

- 1. ln () angegebene Werte gelten für TX320M und TX420M.
- 2. Die durchführbare maximale Geschwindigkeit hängt von den Belastungsbedingungen ab.
- 3. Wenn Sie die maximale Geschwindigkeit ändern möchten, ändern Sie die Auflösung mit dem eingebauten Schalter der Linear Encoder-Signalwandlereinheit, die an den Tisch angebracht ist.

Tabelle 8 Maximale Geschwindigkeit, die unter Verwendung eines Motors von Mitsubishi Electric Corporation erzielt wird (mit Linear Encoder)

Auflösung	Maximale Gesch	windigkeit mm/s	Linear Encoder	Linear Encoder	
μm/Puls	Steigung 5 mm	Steigung 10 mm	Signalwandlereinheit (1)	Linear Encoder	
0,01	40	40			
0,02	80	80	APE371 [TTL×50]	LIP581 HEIDENHAIN K.K.	
0,04	160	160	HEIDENHAIN K.K.		
0,05	200	200			
0,1	250 (224)	400	APE371 [TTL×10]		
0,2	250 (224)	500 (448)	HEIDENHAIN K.K.		

Hinweis (¹) Eine der Auflösung entsprechende Linear Encoder-Signalwandlereinheit ist angebracht.

Anmerkungen

- 1. In()angegebene Werte gelten für TX320M und TX420M.
- 2. Die durchführbare maximale Geschwindigkeit hängt von den Belastungsbedingungen ab.
- 3. Wenn Sie die maximale Geschwindigkeit ändern möchten, ändern Sie die Auflösung mit dem eingebauten Schalter der Linear Encoder-Signalwandlereinheit, die an den Tisch angebracht ist.

Table 9 Maximal erreichbare Geschwindigkeit, wenn kein Linear Encoder verwendet wird.

Motormodell	Modell und Größe	Maximale Geschwindigkeit mm/s		
Motormodeli	Modeli dila Giobe	Steigung 5 mm	Steigung 10 mm	
AC-Servomotor	TX120M	250	500	
	TX220M	230	300	
AC-Servomotor	TX320M	224	448	
	TX420M	224	44 0	
	TX120M			
Schrittmotor	TX220M	150	300	
	TX320M			

Anmerkung: Die Werte der jeweiligen Achsen sind bei Tischen mit zwei Achsen die gleichen wie bei Tischen mit einer Achse.

Tabelle 10 Linear Encoder-Ausführung

Artikel		Inhalt		
Modell		LIP581R		
Hersteller		HEIDENHAIN K.K.		
Material der Skala		Glas		
Koeffizient der Längenausdehnung	/℃	8×10 ⁻⁶		
Genauigkeitsklasse	μm/m	±1		
Ausgabesignal		Sinuswelle		
Signalzyklus	Vpp/4μm	1		
Maximale Betriebsgeschwindigkeit	m/s	1,2		
Kabeldurchmesser	mm	Ø4.5		
Biegeradius des Kabels	mm	≥ 50		

Tabelle 11 Wandlereinheit für YASKAWA ELECTRIC CORPORATION

Artikel	Inhalt		
Hersteller		YASKAWA ELECTRIC CORPORATION	
Modell		JZDP-D003-000-E	
Signalauflösung		1/256 des Abstandes der Zweiphasen-Sinuswelle	
Maximale Ansprechfrequenz	kHz	250	
Größe	mm	90×60×23	
Masse	kg	0,15	

Tabelle 12 Wandlereinheit für Panasonic Corporation und Mitsubishi Electric Corporation

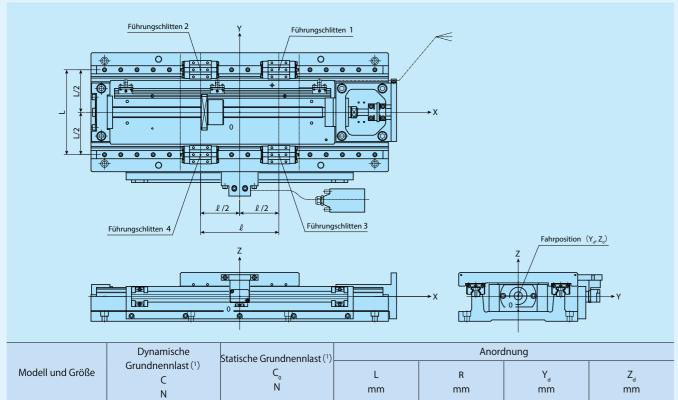

	Artikel	Inhalt			
Hersteller			HEIDENHAIN K.K.		
Modell			APE371 [TTL×50]		
			APE371 [TTL×10]		
Signalauflösung			Je nach Einstellung des internen Schalters		
Maximale Ansprech	frequenz		Je nach Einstellung des internen Schalters		
	Konverter-Abschnitt(?)	mm	80×42×17		
Größe	Anschluss-Abschnitt(?)	mm	48×42×17		
	Kabellänge mm		1 000		
Masse		kg	0,20		

Tabelle 13 Maximale Belastung

Tabelle 13 Maximule belasting							
Modell und Größe	Spindelsteigung	Maximale Belastung kg					
	mm	Horizontal	Vertikal				
TV12014	5	254	28				
TX120M	10	154	28				
TX220M	5	382	30				
IAZZOWI	10	187	29				
TX320M	5	536	27				
TA32UWI	10	254	25				
TX420M	5	519	10				
	10	237	8				

Einheit: mm

Tabelle 14 Ausführung der Wälzkörper-Linearführung

88

157

240

300

82

145

210

290

0

0

0

0

Hinweis (1) Gibt den Wert pro Führungsschlitten an.

6 120

11 500

32 100

38 200

Anmerkung: Die Werte der jeweiligen Achsen sind bei Tischen mit zwei Achsen die gleichen wie bei Tischen mit einer Achse.

10 400

20 000

56 300

70 300

Table 15.1 Ausführungen der Spindel

TX120M

TX220M

TX320M

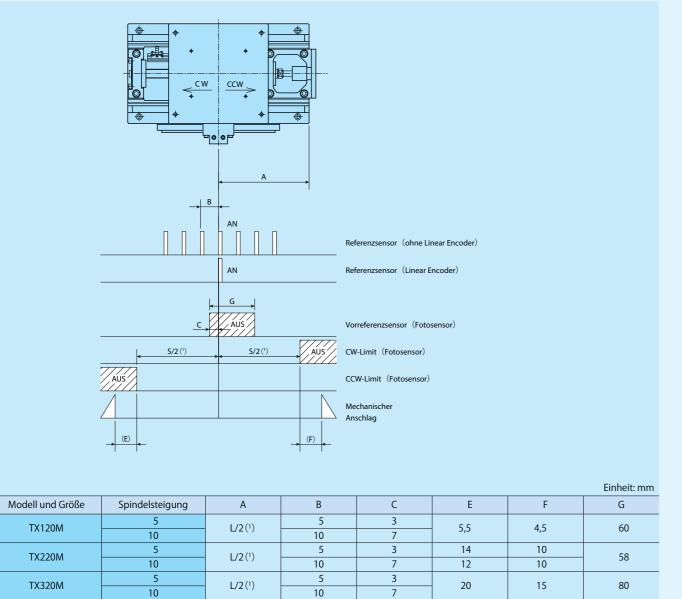
TX420M

Modell und Größe	Spindel- modell	Steigung mm	Schaftdurchmesser mm	Axialspiel mm	Dynamische Grundnennlast C N	Statische Grundnennlast C _o N
TX120M	Geschliffene Spindel	5	15	0	7 070	12 800
TATZOW	descrimente spinder	10	15	U	7 070	12 800
TX220M	Geschliffene Spindel	5	20	0	8 230	17 150
IAZZUWI	descrimente spinder	10	20	U	10 900	21 700
TX320M	Geschliffene Spindel	5	25	0	16 700	43 500
1 \(\)	1x320W Geschillene Spinder	10	25	U	15 800	32 700
TX420M	Caschliffona Spindal	5	25	0	16 700	43 500
1 A420IVI	Geschliffene Spindel	10	25	U	15 800	32 700

Anmerkung: Die Werte der jeweiligen Achsen sind bei Tischen mit zwei Achsen die gleichen wie bei Tischen mit einer Achse.

Table 15.2 Ausführungen der Spindel

Modell und Größe Hublänge Schaftdurchmesser Gesamtlänge 100 256 150 306 TX120M 200 15 356 250 406 300 456 150 370 200 420 TX220M 250 20 470 300 520 400 620 300 616 TX320M 400 25 716 500 816 500 916 TX420M 600 25 1 016 800 1 216


Tabelle 16 Trägheits- und Anlaufmoment des Tisches

	16 Trägheits- und A	Hubl	änge im	Trägheitsmoment des Tisches J _T ×10-5kg•m²		Kupplung	Anlaufmoment T _s
Modell und Größe		X-Achse	Y-Achse	Steigung 5 mm	Steigung 10 mm	Trägheitsmoment J _T ×10 ⁻⁵ kg•m²	N∙m
		1(00	1,3	1,8		
		1:	50	1,5	2,0		
	TX120M	20	00	1,6	2,2	0,29	0,07
		2:	50	1,8	2,4		
hse		3(00	2,0	2,6		
Ausführung mit einer Achse	TX220M	1:	50	5,2	7,0		
ine		20	00	5,8	7,6		
it e		250		6,4	8,2	0,85	0,12
gπ		30	300		8,8		
뒬		40	400		10		
Ęj:		300 400		20	26		
Aus	TX320M			23	29		
		500		26	32		
		500		30	39		
	TX420M		00	33	42	0,85	0,30
			00	39	48		
· a		100	100	2,1	4,7		
ZW6	CTX120M	200	100	2,4	5,1	0,29	0,07
nit.		200	200	2,5	5,8		.,
ırung m Achsen		300	200	2,9	6,2		
Ausführung mit zwei Achsen		200	200	8,2	16,9		
sfüł	CTX220M	300	200	9,5	18,1	0,85	0,13
Au		300	300	9,8	19,3	-	,
	D. T. L.	400	300	11,0	20,5	1 to 10 T 1 11 C 10	

Anmerkung: Bei Tischen mit zwei Achsen gibt die Abbildung die Werte der X-Achse an. Für die Werte der Y-Achse bitte die Tabelle für die Ausführung mit einer Achse konsultieren.

Ausführung mit Sensoren

Table 17 Sensor-Zeittafel

Hinweis (1) Siehe Maßtabellen auf den Seiten II - 157 bis II - 162.

10

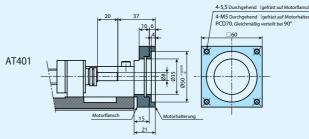
Anmerkungen

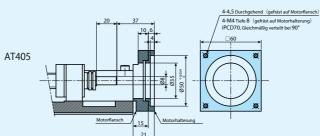
TX420M

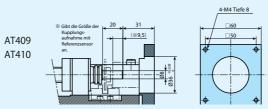
1. Die Ausführungen der jeweiligen Sensoren finden Sie im Abschnitt Sensorausführung unter Allgemeine Erläuterung.

18

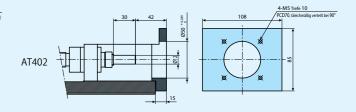
15

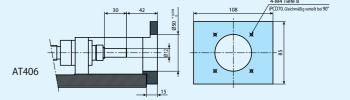

100

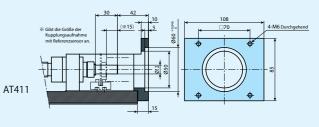

2. Die Werte der jeweiligen Achsen sind bei Tischen mit zwei Achsen die gleichen wie bei Tischen mit einer Achse.

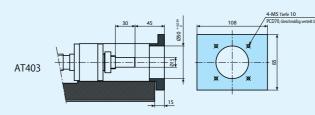

L/2(1)

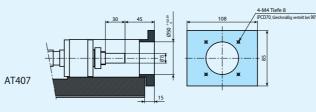
Abmessungen des Motorflansches

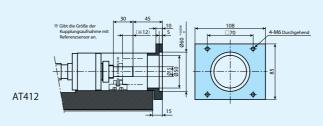

TX120M, CTX120M

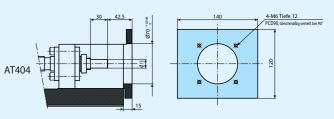


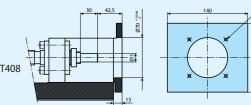


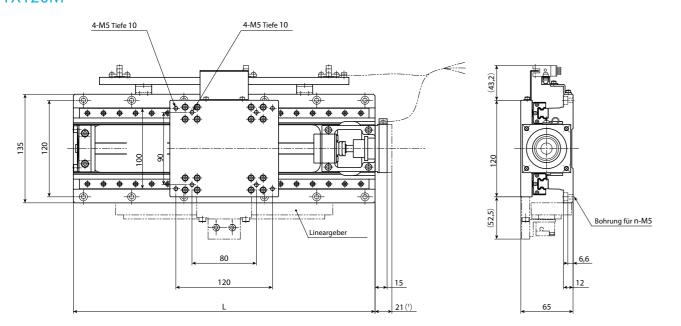

TX220M, CTX220M

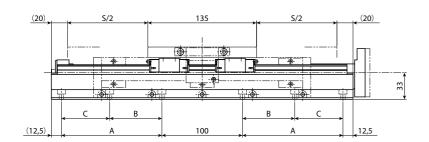





TX320M

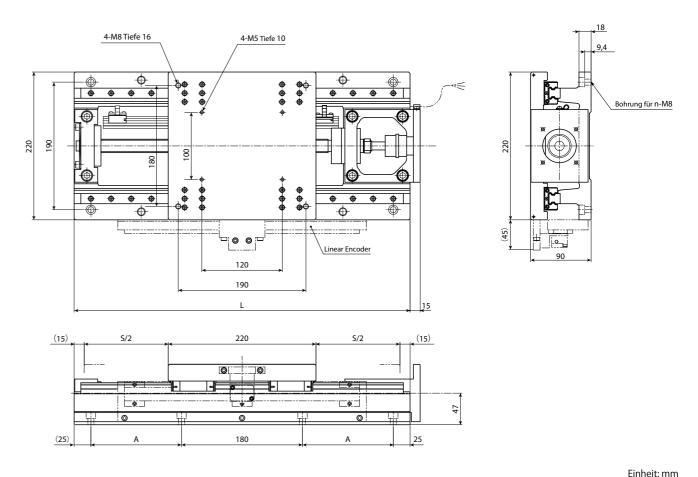



TX420M



IK Schwerlast-Präzisionspositioniertisch TX

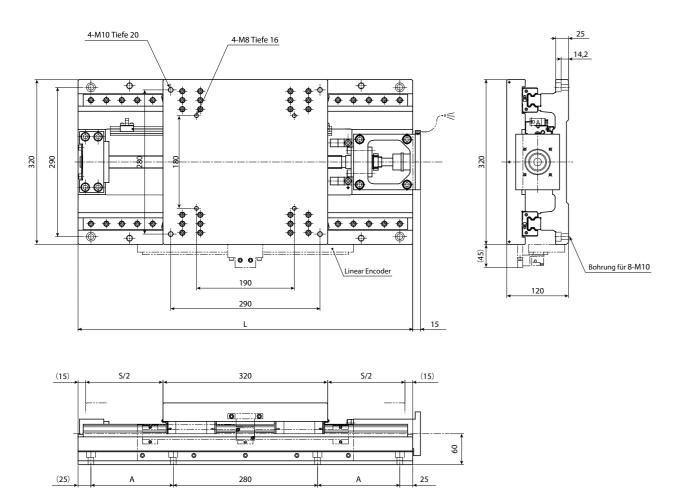
TX120M



Einheit: mm

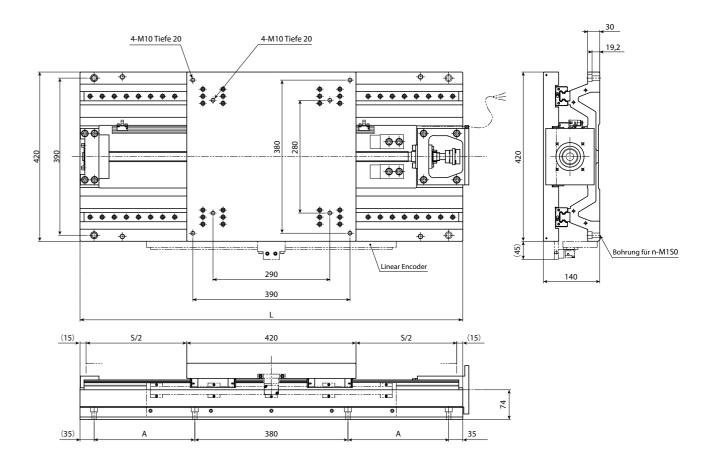
I	Produktbezeichnung	Hublänge	Gesamtlänge	Мо	Masse (Ref.)			
	Floduktbezeichhang	S	S L		В	С	n	kg
	TX120M-100	100	275	75	_	_	8	12
Ī	TX120M-150	150	325	100	_	_	8	13
Ī	TX120M-200	200	375	125	_	_	8	14
	TX120M-250	250	425	150	75	75	12	16
	TX120M-300	300	475	175	100	75	12	17

Hinweis (1) Dies gilt für AT401 und AT405.


TX220M

					LITTICIC, ITITI
Produktbezeichnung	Hublänge S	Gesamtlänge L	Montagebohrungen des Tisches A (Anzahl Bohrungen×Abstand)		Masse (Ref.) kg
TX220M-150	150	400	85	8	34
TX220M-200	200	450	110	8	37
TX220M-250	250	500	135	8	39
TX220M-300	300	550	160	8	42
TX220M-400	400	650	210 (2×105)	12	47

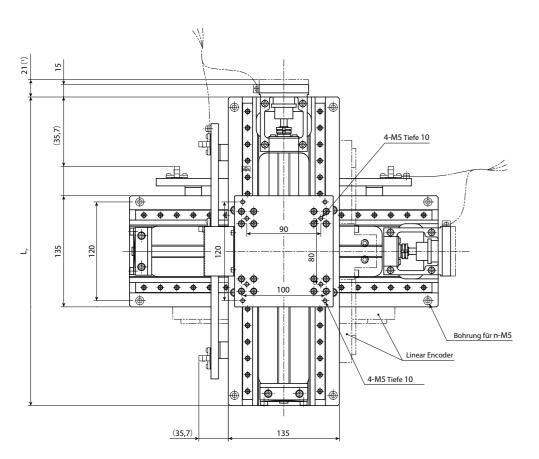
IK Schwerlast-Präzisionspositioniertisch TX

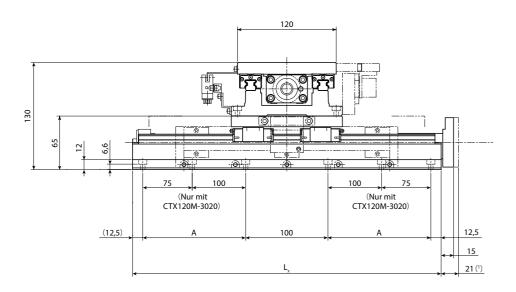

TX320M

Einheit: mm

				2
Produktbezeichnung	Hublänge S	Gesamtlänge L	Montagebohrungen des Tisches A	Masse (Ref.) kg
TX320M-300	300	650	160	104
TX320M-400	400	750	210	115
TX320M-500	500	850	260	124

TX420M

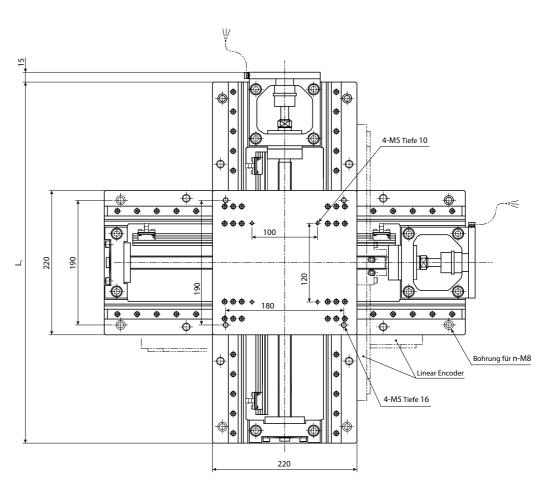


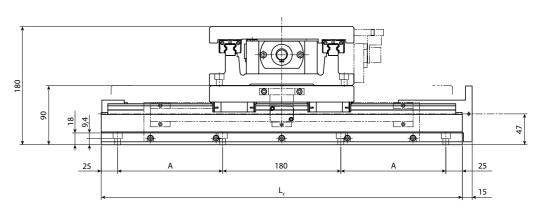

Einheit: mm

					Ell life Cit. I lilli
Produktbezeichnung	Hublänge	Gesamtlänge L	Montagebohrur	Masse (Ref.)	
	S		A (Anzahl Bohrungen×Abstand)	n	kg
TX420M-500	500	950	250	8	183
TX420M-600	600	1 050	300	8	197
TX420M-800	800	1 250	400 (2×200)	12	223

IK Schwerlast-Präzisionspositioniertisch TX

CTX120M


Einheit: mm


Produkt-	Hublänge S		Gesam	Gesamtlänge		Montagebohrungen des Tisches		
bezeichnung	X-Achse	Y-Achse	L _x	L _y	A	n	kg	
CTX120M-1010	100	100	275	275	75	8	23	
CTX120M-2010	200	100	375	275	125	8	26	
CTX120M-2020	200	200	375	375	125	8	28	
CTX120M-3020	300	200	475	375	175	12	31	

Hinweis (1) Dies gilt für AT401 und AT405.

Anmerkung: Da eine Kombination aus einer Hublänge, die nicht oben aufgeführt wird, eine unterschiedliche Tischgröße sowie die Produktion einer Ausführung mit Kabelführung möglich ist, kontaktieren Sie bitte **IKU**.

CTX220M

Einheit: mm

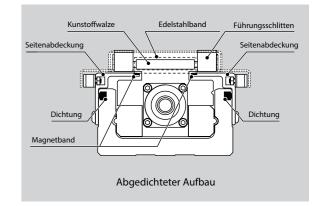
Produkt-	Hubla	Hublänge S		Gesamtlänge		Montagebohrungen des Tisches		
bezeichnung	X-Achse	Y-Achse	L _x	L _y	A (Anzahl Bohrungen×Abstand)	n	Masse (Ref.) kg	
CTX220M-2020	200	200	450	450	110	8	73	
CTX220M-3020	300	200	550	450	160	8	78	
CTX220M-3030	300	300	550	550	160	8	83	
CTX220M-4030	400	300	650	550	210 (2×105)	12	88	

Anmerkung: Da eine Kombination aus einer Hublänge, die nicht oben aufgeführt wird, eine unterschiedliche Tischgröße sowie die Produktion einer Ausführung mit Kabelführung möglich ist, kontaktieren Sie bitte **IKO**.

II-163

Vorteile

Flacher und kompakter Reinraum-Positioniertisch mit geringem Gewicht


Positioniertisch mit einer Struktur mit verbesserten Dichtungseigenschaften im Inneren des Tisches, der auf dem leichten, flachen und kompakten Präzisionspositioniertisch TE basiert. Dank des optimalen Designs von Wälzkörper-Linearführung und Spindel wird ein flacher Querschnitt von nur 50 mm für TC50EB, 54 mm für TC60EB und 67 mm für TC86EB erzielt. Da der Sensor dafür konzipiert wurde, direkt auf der Sensornut angebracht zu werden, trägt er zur Raumeinsparung bei.

Hohe Korrosionsbeständigkeit

Die Hauptkomponenten bestehen aus einer anodisierten Aluminiumlegierung und Edelstahl (Edelstahlband), um eine hervorragende Korrosionsbeständigkeit zu gewährleisten.

■ Kompatibel mit Reinraumklasse 3

Drücken Sie das Edelstahlband mithilfe der Kunststoffrolle im Innern des Führungsschlittens gegen die Seitenabdeckung. Das integrierte Magnetband verhindert in Kombination mit der Abdichtung das Ansammeln von Partikeln im Gehäuse. Die Partikel können über ein Absaugsystem automatisch entfernt werden. CGL-Fett mit geringer Staubentwicklung für Reinräume ist in den Führungsteilen der Führungsschlitten und Spindeln enthalten, um die Staubbildung zu reduzieren.

Variation

Form	Modell	Tischbreite (mm)			
Form		50	60	86	
	ТС…ЕВ	☆	☆	☆	

Wichtige Produktbeschreibungen

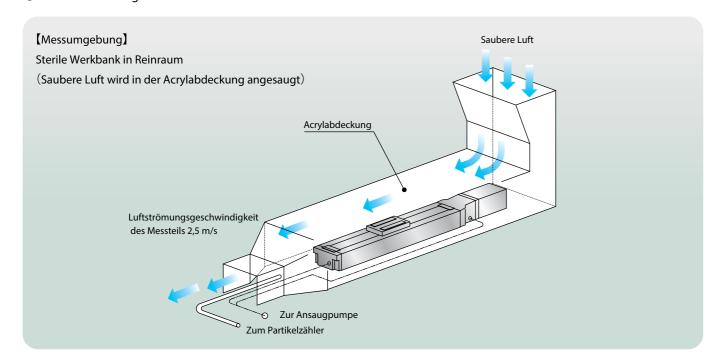
Antriebsmethode	Präzisionsspindel
Wälzkörper-Linearführung	Kugelumlaufführung
Eingebaute Schmierplatte	"C-Lube"-Schmierplatte eingebaut
Tisch- und Gestellmaterial	Hochfeste Aluminiumlegierung
Sensor	Nach Produktbezeichnung auswählen

Genauigkeit

	Einheit: mm
Wiederholgenauigkeit	±0,002
Positioniergenauigkeit	0,035~0,065
Leerlauf	-
Parallelität der Tischbewegung A	-
Parallelität der Tischbewegung B	0,008~0,016
Verwindungsgenauigkeit	-
Geradheit	-
Umkehrspiel	0,005

🗽 Zur Reinheitsmessung

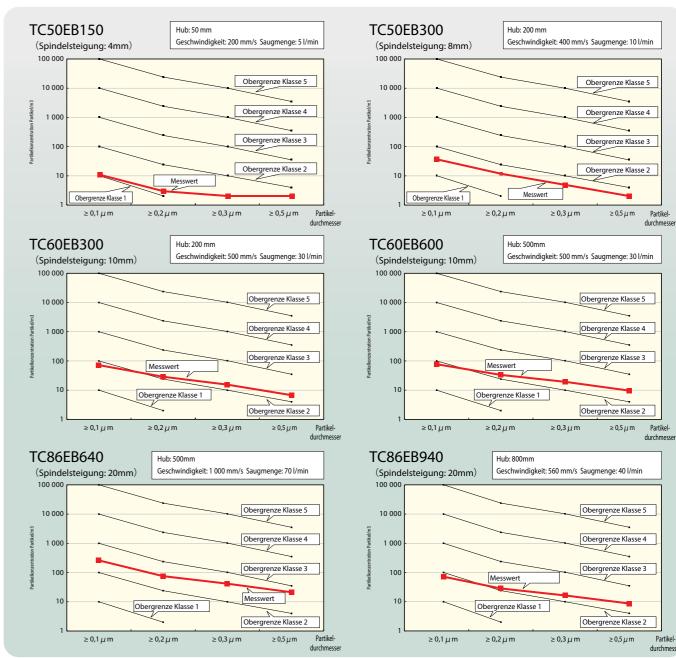
Reinheit bezeichnet klassifizierte Luftreinheitsstufen auf Grundlage der Größe (Partikeldurchmesser) und Anzahl der Schwebstoffe pro Volumeneinheit. **IK** misst die Reinheit mit den folgenden Verfahren.


Messbedingung

Artikel	Inhalt
Messausrüstung	Partikelzähler
Luftströmungsge- schwindigkeit des Messteils	2,5 m/s
Gemessenes Luftvolumen	28,3 l (1cf)
Messzeit	48 h(10 min/Messung, 1 Messung/h)

Testgerät

Schema des Testgeräts

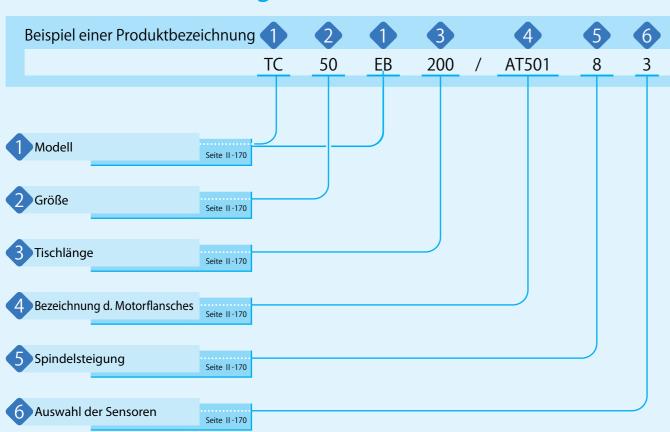


■ Konzentrationsobergrenze ieder Reinheitsklasse (IIS B 9920 · 2002, ISO 14644-1· 1999)

Konzentrationsoberg	Einheit: Partikel/m³						
Reinheit	Partikeldurchmesser						
	≥ 0,1 μ m	≥ 0,2 μ m	≥ 0,3 μ m	≥ 0,4 μ m			
Klasse 1	10	2	_	_			
Klasse 2	100	24	10	4			
Klasse 3 (Federal Standard 209D Klasse 1)	1 000	237	102	35			
Klasse 4 (Federal Standard 209D Klasse 10)	10 000	2 370	1 020	352			
Klasse 5 (Federal Standard 209D Klasse 100)	100 000	23 700	10 200	3 520			
Klasse 6 (Federal Standard 209D Klasse 1000)	1 000 000	237 000	102 000	35 200			

Tatsächliche Reinheitmessdaten

Beispiel für Messdaten [Oberes Konzentrationsgrößendiagramm für jede Reinheitsklasse]


Reinheitsmessergebnisse

Modell und Größe	Tischlänge	Spindelsteigung mm	Hublänge mm	Geschwindigkeit mm/s	Saugmenge L/min	Reinheitsklasse (JIS B 9920:2002, ISO 14644-1: 1999)
	150	4	50	200	5	Klasse 2
TC50EB	200	4	100	200	10	Klasse 2
	300	8	200	400	10	Klasse 2
	150	5	50	250	30	Klasse 3
TC60EB	300	10	200	500	30	Klasse 3
	600	10	500	500	30	Klasse 3
	340	10	200	500	30	Klasse 3
TC86EB	640	10	500	500	40	Klasse 3
ICADER	640	20	500	1 000	70	Klasse 3
	940	20	800	560	40	Klasse 3

Anmerkung: Die Reinheit unterscheidet sich je nach Betriebsumgebung und -bedingungen.

1N=0.102kgf=0.2248lbs. 1mm=0,03937 Zoll

Produktbezeichnung

Produktbezeichnung und Ausführung.

TC···EB: Reinraum-Präzisionspositioniertisch TC

Größe gibt die Tischbreite an.

Wählen Sie eine Größe aus der Liste in Tabelle 1.

Wählen Sie eine Tischlänge aus der Liste in Tabelle 1.

Tabelle 1 Größen, Tischbreiten, Tischlängen

Einheit: mm

Modell und Größe	Tischbreite	Tischlänge (Hublänge)						
TC50EB	50	150 (50)	200 (100)	250 (150)	300 (200)	_	_	_
TC60EB	60	150 (50)	200 (100)	300 (200)	400 (300)	500 (400)	600 (500)	_
TC86EB	86	340 (200)	440 (300)	540 (400)	640 (500)	740 (600)	840 (700)	940 (800)

4 Bezeichnung d. Motorflansches

AT500: Ohne Motorflansch

Wählen Sie zur Angabe des Motorflansches eine Bezeichnung aus Tabelle 2 aus.

- Der Motor sollte durch den Kunden montiert werden.
- Bitte geben Sie die für den zu verwendenden Motor anwendbaren Motorflansch an.
- Sollte Motorflansch ausgewählt werden, wird eine in Tabelle 3 dargestellte Kupplung vor dem Versand auf dem Tisch montiert. Die endgültige Anpassung sollte jedoch durch den Kunden erfolgen, da sie nur vorübergehend fixiert wird.
- Bei einem Produkt ohne Motorflansch (AT500) ist keine Kupplung angebracht.

5 Spindelsteigung

- 4: Steigung 4 mm (gilt für TC50EB)
- 5: Steigung 5 mm (gilt für TC60EB)
- 8: Steigung 8 mm (gilt für TC50EB)
- 10: Steigung 10 mm (gilt für TC60EB und TC86EB)
- 20: Steigung 20 mm (gilt für TC86EB)

6 Auswahl der Sensoren

0: Ohne Sensor

2: Zwei Sensoreinheiten montiert

(Limit, Vor-Referenzsensor)

(Limit)

3: Drei Sensoreinheiten montiert 4: Vier Sensoreinheiten montiert (Limit, Vor-Referenzsensor, Referenzsensor)

5: Zwei angebrachte Sensoren (Limit)

6: Drei angebrachte Sensoren (Limit, Vor-Referenzsensor)

7: Vier angebrachte Sensoren

(Limit, Vor-Referenz- und Referenzsensor)

Wenn die Sensorbefestigung (Symbol 2, 3 oder 4) ausgewählt wurde, werden der Sensor in der Sensornut auf der Seitenabdeckung sowie zwei Kontaktplatten an den Führungsschlitten angebracht. Sollte eine Sensorbefestigung (Symbol 5, 6 oder 7) ausgewählt werden, werden zusätzlich zu der angegebenen Anzahl an Sensoren Befestigungsschrauben und Muttern für die Sensoren sowie zwei

Kontaktplatten an den Führungsschlitten angebracht.

II-170

Einheit: mm

Tabelle 2 Ausführung des Motorflansches

	Zu verwendende Motormodelle					Motorflansch		
Art	Hersteller	Baureihe	Modell	Nennleistung W	Flanschgröße	TC50EB	TC60EB	TC86EB
			SGMJV-A5A	50		AT501	AT502	_
	YASKAWA		SGMAV-A5A	30	- □40	AT501	AT502	-
	ELECTRIC	Σ-V	SGMJV-01A	100	1 40	_	AT502	_
	CORPORATION	Z-V	SGMAV-01A	100		_	AT502	-
	CONFORMION		SGMJV-02A	200	□60	_	-	AT503
			SGMAV-02A	200		_	_	AT503
			HF-MP053, HG-MR053	50		AT501	AT502	_
	Mitsubishi		HF-KP053, HG-KR053	30	- □40	AT501	AT502	-
	Electric	J3, J4	HF-MP13 HG-MR13	100	40	_	AT502	_
	Corporation	J3, J4	HF-KP13, HG-KR13	100		_	AT502	_
AC-Servo- motor	Corporation		HF-MP23 HG-MR23	200	□60	_	_	AT503
		HF-KP23, HG-KR23	200		_	_	AT503	
		MINAS A5	MSMD5A	- 50		AT504	AT505	_
			MSME5A		□38	AT504	AT505	_
	Panasonic		MSMD01			_	AT505	_
	Corporation		MSME01	100		_	AT505	_
			MSMD02	200	□60	_	_	AT506
			MSME02		200		_	AT506
	Hitachi		ADMA-R5L	50	□40	AT501	AT502	_
	Industrial	AD	ADMA-01L	100	-10		AT502	_
	Equipment Systems Co., Ltd		ADMA-02L	200	□60	_	_	AT503
			AR46		□42	AT507	_	_
			AR66		□60	_	_	AT508
	ORIENTAL	a Schritt	AR69		□60		_	AT508
Schritt- motor MOTOR		a scillitt	AS46		□42	AT509	_	_
	Co., Ltd.		AS66		□60	_	AT510	AT511
	CO., Ltd.		AS69		□60	-	AT510	AT511
		RK	RK54 • CRK5		□42	AT509	_	_
		CRK	RK56 • CRK56	(¹)	□60	_	AT510	AT511

Hinweis (1) Gilt für den Außendurchmesser Ø8 der Motorwelle.

Anmerkung: Detaillierte Motorspezifikationen finden Sie in dem jeweiligen Katalog des Herstellers.

Tabelle 3 Kupplungsmodelle

Motor- flansch	Kupplungsmodelle	Hersteller	Trägheitsmoment der Kupplung J _c ×10 ^{-s} kg•m²
AT501	XGS-19C-5× 8	Nabeya Bi-tech Kaisha	0,062
AT502	XGS-19C-5× 8	Nabeya Bi-tech Kaisha	0,062
AT503	XGS-30C-8×14	Nabeya Bi-tech Kaisha	0,55
AT504	XGS-19C-5× 8	Nabeya Bi-tech Kaisha	0,062
AT505	XGS-19C-5× 8	Nabeya Bi-tech Kaisha	0,062
AT506	XGS-30C-8×11	Nabeya Bi-tech Kaisha	0,55
AT507	XGS-19C-5× 6	Nabeya Bi-tech Kaisha	0,062
AT508	XGS-30C-8×10	Nabeya Bi-tech Kaisha	0,55
AT509	XGS-19C-5× 5	Nabeya Bi-tech Kaisha	0,062
AT510	XGS-19C-5× 8	Nabeya Bi-tech Kaisha	0,062
AT511	XGS-30C-8× 8	Nabeya Bi-tech Kaisha	0,55

Anmerkung: Detaillierte Angaben zu den Kupplungen finden Sie im jeweiligen Katalog des Herstellers.

Ausführungen ...

Tabelle 4 Genauigkeit

Modell und Größe	Tischlänge	Wiederhol- genauigkeit	Positionier- genauigkeit	Parallelität der Tischbewegung B	Umkehrspiel	
	150		0,035			
TC50EB	200	±0,002	0,000	0,008	0,005	
TCSOLD	250	=0,002	0,040	0,000	0,003	
	300		0,040			
	150		0,035		0,005	
TC60EB	200		0,033	0,008		
	300	±0,002	0,040	0,000		
ICOULD	400		0,045			
	500			0,010		
	600		0,050	0,010		
	340		0,040	0,008		
	440		0,045	0,010		
	540		0,050	0,010		
TC86EB	640	±0,002	0,030	0,012	0,005	
	740		0,055	0,012		
	840		0.005	0,014		
	940		0,065	0,016		

Tabelle 5 Maximale Geschwindigkeit

Motormodell		Tischlänge	Maximale Geschwindigkeit mm/s					
	Modell und Größe	Tischlänge mm	Steigung	Steigung	Steigung	Steigung	Steigung	
			4 mm	5 mm	8 mm	10 mm	20 mm	
	TC50EB	_	200	_	400	_	_	
	TC60EB	_	-	250	_	500	_	
AC-Servo-		≤ 640	_	_	_	500	1 000	
motor	TC86EB	740	_	_	_	500	1 000	
	ICOUED	840	_	_	_	400	800	
		940	_	_	_	330	660	
	TC50EB	_	120	_	240	_	_	
Schritt-	TC60EB	_	-	150	_	300	_	
motor	TCOCED	≤ 840	-	_	_	300	600	
	TC86EB	940	_	_	_	300	600	

Anmerkung: Um die durchführbare, maximale Geschwindigkeit zu ermitteln, müssen die Betriebsbedingungen des zu verwendeten Motors und die Lastbedingungen berücksichtigt werden.

Tabelle 6 Mögliches Moment

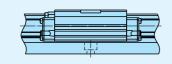
Modell und Größe	Mögliches Moment N • m
TC50EB	5,0
TC60EB	6,0
TC86EB	10,0

Anmerkung: Auf alle Richtungen angewendet.

Table 7 Maximale Belastung

Modell und Größe	Spindelsteigung mm	Maximale Belastung kg		
	111111	Horizontal	Vertikal	
TC50EB	4	12	11	
	8	12	7	
TC60EB	5	17	13	
ICOOLD	10	17	8	
TC86EB	10	36	18	
ICOOLD	20	29	10	

Tabelle 8 Nennlast der Wälzkörper-Linearführung


	Dynamische	Statische Grundnennlast	St	atisches Nennmoment N•	m
Modell und Größe	Grundnennlast C N	C _o	T _o	T _x	T _Y
TC50EB	8 490	12 500	211	99,5	99,5
TC60EB	12 400	17 100	354	151	151
TC86EB	26 800	35 900	1 110	472	472

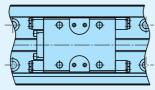


Tabelle 9.1 Ausführungen der Spindel

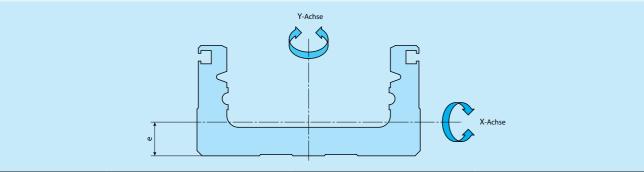

Modell und Größe	Steigung mm	Schaftdurchmesser mm	Dynamische Grundnennlast C N	Statische Grundnennlast ${\rm C_{\scriptscriptstyle 0}}$
TC50EB	4	0	2 290	3 575
ICOUED	8	0	1 450	2 155
TC60EB	5	10	2 730	4 410
ICOUED	10	10	1 720	2 745
TC86EB	10	12	3 820	6 480
ICOUED	20	12	2 300	3 920

Tabelle 9.2 Ausführungen der Spindel

ΗII	nne	ır: m	١m

Modell und Größe	Tischlänge	Schaftdurchmesser	Gesamtlänge
	150		192,5
TC50EB	200	8	242,5
ICSUED	250	0	292,5
	300		342,5
	150		194
	200		244
TC60EB	300	10	344
ICOUED	400	10	444
	500		544
	600		644
	340		395
	440		495
	540		595
TC86EB	640	12	695
	740		795
	840		895
	940		995

Table 10 Flächenträgheitsmoment des Führungsschienenquerschnittes

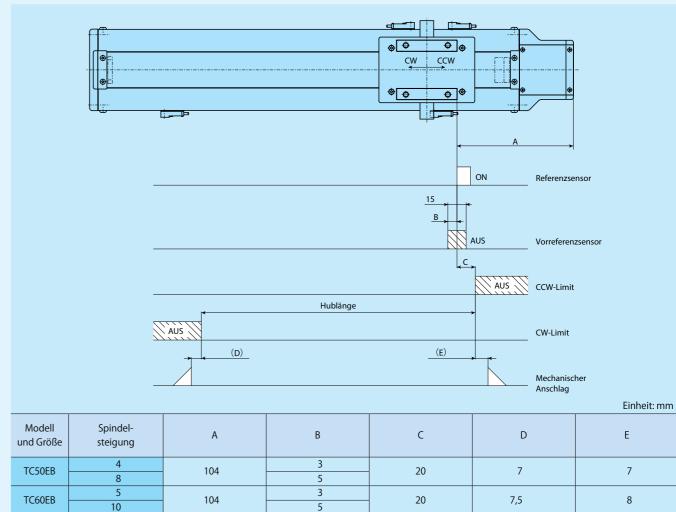

	Flächenträgheit	Schwerpunkt		
Modell und Größe	l _x	l _γ	e mm	
TC50EB	1.3×10 ⁴	1.2×10 ⁵	6,4	
TC60EB	4.7×10 ⁴	3.2×10 ⁵	8,8	
TC86EB	2.0×10 ⁵	1.3×10 ⁶	13,0	

Tabelle 11 Trägheits- und Anlaufmoment des Tisches

Modell	Tischlänge	Träo	Trägheitsmoment des Tisches J _⊤ ×10 ⁻⁵ kg•m²				itsmoment des Tisches $J_{_{\rm T}} \times 10^{-5} {\rm kg} \cdot {\rm m}^2$ Anlaufmoment $T_{_{\rm S}} {\rm N} \cdot {\rm m}$			N•m	
und Größe	mm	Steigung 4 mm	Steigung 5 mm	Steigung 8 mm	Steigung 10 mm	Steigung 20 mm	Steigung 4 mm	Steigung 5 mm	Steigung 8 mm	Steigung 10 mm	Steigung 20 mm
	150	0,062	_	0,092	_	_					
TC50EB	200	0,074	-	0,104	-	-	0,03	_	0,03	_	_
TCJUEB	250	0,090	-	0,120	_	_	0,03		0,03	_	
	300	0,102	ı	0,132	_	_					
	150	_	0,14	_	0,21	_					
	200	-	0,20	_	0,27	_					
TC60EB	300	_	0,27	_	0,34	_	_	0,03	_	0,04	_
ICOULD	400	_	0,34	_	0,41	_		0,03		0,04	
	500	_	0,41	_	0,48	-					
	600	-	0,49	_	0,55	-					
	340	_	_	_	0,78	1,36					
	440	_	_	_	0,93	1,51					
	540	_	_	_	1,08	1,66					
TC86EB	640	-	-	_	1,23	1,81	_	_	_	0,06	0,10
	740	_	_	_	1,38	1,96					
	840	_	_	_	1,53	2,11					
	940	_	_	_	1,68	2,26					

Ausführung mit Sensoren

Table 12 Sensor-Zeittafel

TC86EB Anmerkungen 10

20

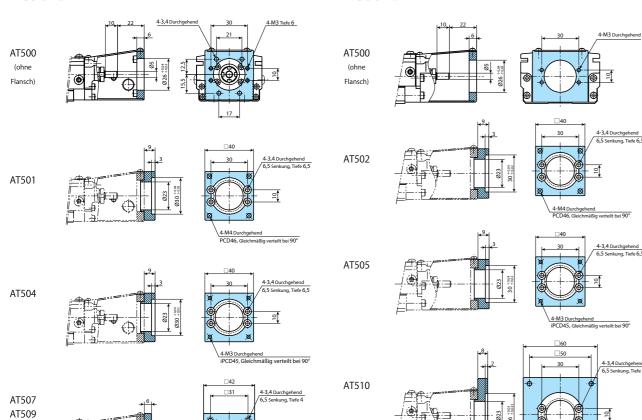
127,5

- 1. Die Montage eines Sensors wird unter Verwendung der entsprechenden Produktbezeichnung angegeben.
- 2. Die Ausführungen der jeweiligen Sensoren finden Sie im Abschnitt Sensorausführung unter Allgemeine Erläuterung.

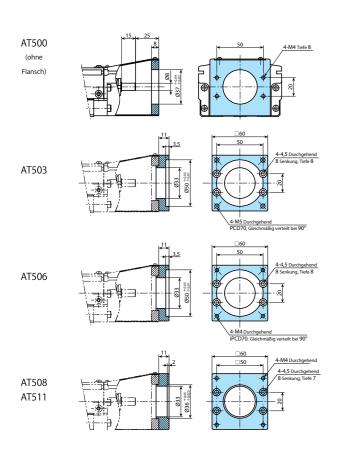
20

1N=0,102kgf=0,2248lbs.

1mm=0,03937 Zoll

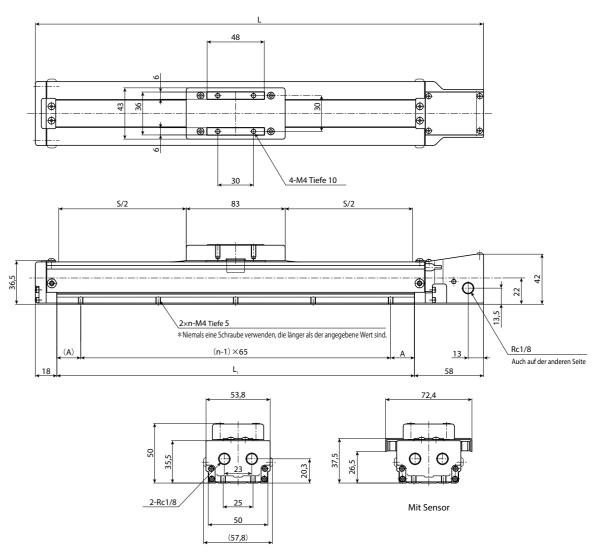

11

II-173


14

Abmessungen des Motorflansches

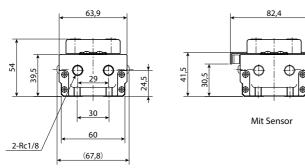
TC50EB TC60EB



TC86EB

IIC Präzisionspositioniertisch TC für Reinräume

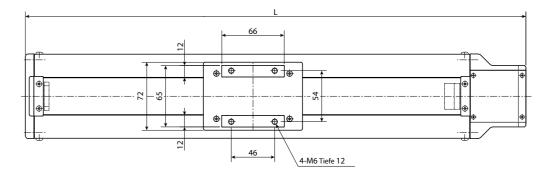
TC50EB

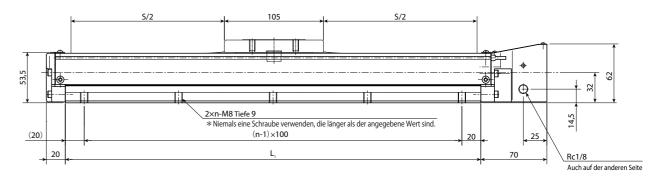

Einheit: mm

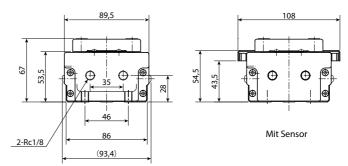
Tischlänge	Gesamtlänge	Hublänge	Gewindebohrunge	n des Tisches	Masse (Ref.)
L,	L	S	A	n	kg
150	226	50	10	3	0,9
200	276	100	35	3	1,0
250	326	150	27,5	4	1,1
300	376	200	20	5	1,2

Präzisionspositioniertisch TC für Reinräume

TC60EB

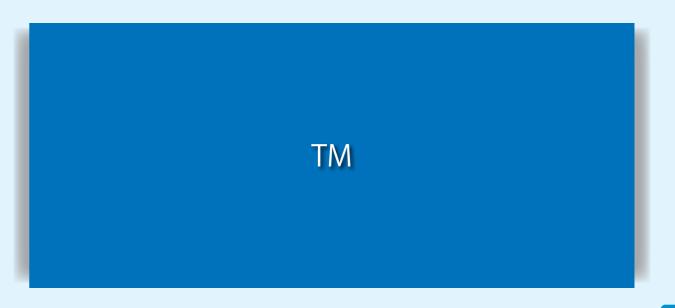



Einheit: mm


Tischlänge	Gesamtlänge	Hublänge	Gewindebohrunge	n des Tisches	Masse (Ref.)
L ₁	L	\$	A	n	kg
150	225	50	30	2	1,1
200	275	100	10	3	1,3
300	375	200	15	4	1,7
400	475	300	20	5	2,0
500	575	400	25	6	2,4
600	675	500	30	7	2,7

Anmerkung: Die Motorbefestigung für den Schrittmotor ist 8 mm niedriger als die Unterseite des Tisches.

TC86EB



Einheit: mm

Tischlänge L,	Gesamtlänge L	Hublänge S	Gewindebohrungen des Tisches n	Masse(Ref.) kg
340	430	200	4	3,6
440	530	300	5	4,2
540	630	400	6	4,8
640	730	500	7	5,4
740	830	600	8	6,0
840	930	700	9	6,6
940	1 030	800	10	7,3

II-179

Spindellager

Führungsschlitten

Vorteile

Sehr kleiner Positioniertisch mit einer Querschnittshöhe von 20 mm und einer Breite von 17 mm dank geschliffener Spindel

Die Verwendung einer Mikro-Kugelumlaufführung L mit einer Führungsschienenbreite von 2 mm in der Tischführung und eine sehr kleine Spindel mit einem Durchmesser von 2 mm im Transportmechanismus führen zu einem noch nie dagewesenen ultra-kleinen Positioniertisch mit geschliffener Spindel.

Maximale Schlittengeschwindigkeit von 150 mm/s

Die Kombination von Spindeln mit hoher Steigung und AC-Servomotoren mit hohem Drehmoment ermöglichen eine hohe Geschwindigkeit des Schlittens ohne Einbußen bei der Genauigkeit.

Tischausführung kann nach ihren Bedürfnissen ausgewählt werden.

> Es gibt zwei Arten von Führungsschlittenformen: Standardschlitten und langer Schlitten. Da zwei Mikro-Kugelumlaufführungen L mit zwei Führungsschlitten im langen Tisch parallel eingebaut sind, kann die Struktur des Tisches komplexe Momentbelastungen aufnehmen. Gemäß ihrem Anwendungszweck kann der Motor aus zwei Arten von AC-Servomotoren und Schrittmotoren ausgewählt werden (Standardmodell oder Modell mit hohem Drehmoment).

 Optional kann ein sehr kleiner Sensor eingebaut werden.

> Die jeweiligen Sensoren (Referenz-, Vor-Referenz, CW- und CCW-) können ohne Veränderung der Außenmaße integriert werden.

Abdeckung

Genauigkeit

Motor

Antriebsmethode	Präzisionsspindel		
Wälzkörper-Linearführung	Kugelumlaufführung		
Eingebaute Schmierplatte	Nicht eingebaut		
Tisch- und Gestellmaterial	Edelstahl		
Sensor	Nach Produktbezeichnung auswählen		

Wichtige Produktbeschreibungen

II-181

	Einheit: mm
Wiederholgenauigkeit	±0,001~0,002
Positioniergenauigkeit	0,015
Leerlauf	-
Parallelität der Tischbewegung A	-
Parallelität der Tischbewegung B	-
Verwindungsgenauigkeit	-
Geradheit	-
Umkehrspiel	-

Gestell

Sensor

Spindel

Kugelumlaufführung

	F	Madalld Caille			Hublänge	e (mm)		
	Form	Modell und Größe	10	20	30	40	50	60
15 mm	Standardschlitten	TM15	_	$\stackrel{\wedge}{\simeq}$	-	- ☆ -	$\stackrel{\wedge}{\boxtimes}$	
17 mm	Langer Schlitten	TM15G	$\stackrel{\wedge}{\sim}$	_	☆	_	-	_

Produktbezeichnung

Produktbezeichnung und Ausführung ...

1 Modell	TM: Mikro-Präzisionspositioniertisch TM
2 Größe	15: Tischbreite 15 mm
3 Schlittenform	Kein Symbol: Standardschlitten G: Langer Schlitten
4 Tatsächliche Hublänge	Wählen Sie eine tatsächliche Hublänge aus der Liste in Tabelle 1.

Tabelle 1 Form des Führungsschlittens und tatsächliche Hublänge

Form des Führungsschlittens	Tatsächliche Hublänge mm
Standardschlitten	20、40、60
Langer Schlitten	10、30、50

Anmerkung: Eine Kunststoffabdeckung wird verwendet, allerding kann auch eine Abdeckung aus Edelstahl hergestellt werden. Falls erforderlich, bitte **IKO** kontaktieren.

Ausführungen .

Tabelle 2 Genauigkeit Einheit: mm

rabelle 2 derlaaigkeit				
Modell	Spindelsteigung	Wiederholgenauigkeit	Positioniergenauigkeit	
	0,5	±0,001		
TM15 -20	1	±0.002	0,015	
	1,5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	0,5	±0,001		
TM15 -40	1	+0.002	0,015	
	1,5			
	0,5	±0,001		
TM15 -60	1	+0.002	0,015	
	1,5	10,002		
	0,5	±0,001		
TM15G-10	1	+0.002	0,015	
	1,5	±0,002		
	0,5	±0,001		
TM15G-30	1	±0.002	0,015	
	1,5	±0,002		
	0,5	±0,001		
TM15G-50	1	±0,002	0,015	
	1,5	±0,002		

Tabelle 3 Maximale Geschwindigkeit

Motormodell	Drehzahl des Motors	Maximale Geschwindigkeit mm/s				
Motormoden	min ⁻¹	Steigung 0,5 mm	Steigung 1 mm	Steigung 1,5 mm		
AC-Servomotor	6 000	50	100	150		
Schrittmotor	rittmotor 1 800 15 30		30	45		

Anmerkung: Um die durchführbare, maximale Geschwindigkeit zu ermitteln, müssen die Betriebsbedingungen des zu verwendeten Motors und die Lastbedingungen berücksichtigt werden.

Tabelle 4 Maximale Belastung

Modell und Größe	Spindelsteigung mm	Maximale Belastung kg		
		Horizontal	Vertikal	
	0,5	0,7	0,5	
TM15	1,0	0,7	0,5	
	1,5	0,7	0,5	
	0,5	1,5	0,5	
TM15G	1,0	1,5	0,5	
	1,5	1,5	0,5	

Tabelle 5 Ausführungen der Spindel

Einheit: mm

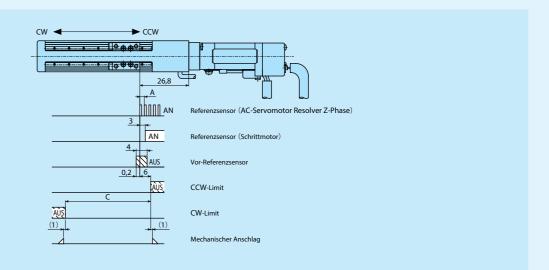
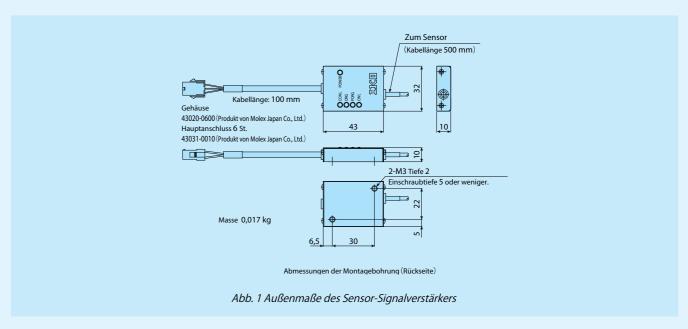

				2
Modell und Größe	Form des Führungsschlittens	Hub	Schaftdurchmesser	Gesamtlänge
		20		54
	Standard	40		74
TM15		60	2	94
TIVITO	Lang	10	2	54
		30		74
		50		94

Tabelle 6 Trägheitsmoment des Tisches, Trägheitsmoment der Kupplung und Anlaufmoment

		11				
Modell und Größe	Träg	gheitsmoment des Tische ×10 ⁻⁵ kg • m²	Trägheitsmoment der Kupplung J _c	Anlaufmoment T _s N•m		
	Steigung 0,5 mm	Steigung 1 mm	Steigung 1,5 mm	×10⁻⁵kg • m²	14-111	
TM15 -20	0,00013	0,00016	0,00022			
TM15 -40	0,00016	0,00019	0,00024			
TM15 -60	0,00018	0,00021	0,00026	0,0028	0.005	
TM15G-10	0,00014	0,00019	0,00028	0,0026	0,003	
TM15G-30	0,00016	0,00021	0,00030			
TM15G-50	0,00018	0,00023	0,00032			

Ausführung mit Sensoren

Table 7 Sensor-Zeittafel

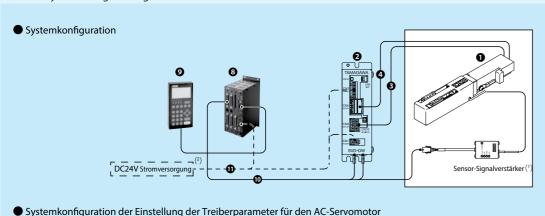

Einheit: mm

Modell und Größe	Spindelsteigung	А	Tatsächliche Hublänge (1)	C (Ref.)
	0,5	0,25		
TM15 -20	1	0,5	20	Tatsächliche Hublänge+2
	1,5	0,75		
	0,5	0,25		
TM15 -40	1	0,5	40	Tatsächliche Hublänge+2
	1,5	0,75		
	0,5	0,25		
TM15 -60	1	0,5	60	Tatsächliche Hublänge+2
	1,5	0,75		
	0,5	0,25		
TM15G-10	1	0,5	10	Tatsächliche Hublänge + 0,5
	1,5	0,75		
	0,5	0,25		
TM15G-30	1	0,5	30	Tatsächliche Hublänge + 0,5
	1,5	0,75		
	0,5	0,25		
TM15G-50	1	0,5	50	Tatsächliche Hublänge + 0,5
	1,5	0,75	1	

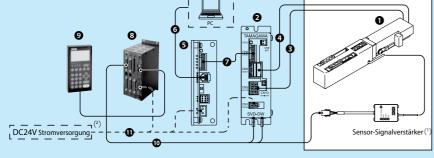
Hinweis (1) Die Sensorposition kann nicht angepasst werden. Die tatsächliche Hublänge gibt die Hublänge an, die zwischen den Endsensoren sicher erreicht werden kann.

Anmerkungen

- 1. "Mit Sensor" oder "Ohne Sensor" sowie die Anordnungen der Verkabelungen werden mithilfe der entsprechenden Produktbezeichnung angegeben.
- 2. Die Ausführungen der jeweiligen Sensoren finden Sie im Abschnitt Sensorausführung unter Allgemeine Erläuterung.



1N=0,102kgf=0,2248lbs. 1mm=0,03937 Zoll


Systemkonfiguration.

Treiber für Mikro-Präzisionspositioniertisch TM wird mitgeliefert. Die folgende Tabelle zeigt eine typische Systemkonfiguration. Angaben zum Treiber finden Sie im Abschnitt Motor- und Treiberausführungen auf den Seiten II-188 bis II-192. Geben Sie bei der Bestellung bitte die gewünschten Modellnummern aus der Liste aus folgender Tabelle an.

Tabelle 8 Systemkonfigurierung

Nr.	Name		Modellr	nummer	
0	Motorcode	T001 AC-Servomotor (Standardmodell)	T004 AC-Servomotor (Modell mit hohem Drehmoment)	T002 Schrittmotor (Fünf Phasen)	T003 Schrittmotor (Zwei Phasen)
2	Treiber	TA8410N7318E936	TA8410N7318E951	TD-5M13-L	eTD-24A
8	Motorkabel	EU961	4N□0	TAE20S6-SM0□ (TAE20S7-SN0□)	TAE20S8-SM0□ (TAE20S9-SN0□)
4	Kabel für Resolversignal	EU961	5N□0	-	_
6	Kommunikationseinheit (3)	TA843	TA8433N211		_
6	RS-232C Kabel (3)	EU6517N2		_	_
Ø	SV-NET Kabel (3)	EU9610	N20□0	_	_
8	Programmierbarer Controller		CTN	481G	
Ø	Eingabeeinheit		TAE10	M5-TB	
0	Kabel für Impulssignal und	TAE10U	5-LD0□	TAE10U7-LD0□	TAE10U9-LD0□
	Kabel für Grenzsignal (4)	(TAE10U	6-LD0□)	(TAE10U8-LD0□)	(TAE10V0-LD0□)
•	Netzkabel	Dies muss d	urch den Kunden bereitgestell	t werden. (5)	Dies muss durch den Kunden bereitgestellt werden. (6)

Hinweise (1) Wenn Sie "Ohne Sensor" auswählen, wird kein Sensor-Signalverstärker angebracht.

- (2) DC24V-Stromversorgung muss durch den Kunden separat bereitgestellt werden.
- (3) Dies wird bei der Einstellung der Parameter benötigt. Siehe dazu den Abschnitt zur Parametereinstellung für den Treiber. Angaben zu den Kommunikationseinheiten finden Sie im Abschnitt zu den Ausführungen der Kommunikationseinheiten für den AC-Servomotor T001 und T004 auf Seite Il-190.
- (4) Sollte der Kunde einen anderen programmierbaren Controller verwenden als den CTN481G, müssen das Kabel für Impulssignal und das Kabel für Grenzsignal durch den Kunden bereitgestellt werden.
- (5) Verbindungen für Treiber und Kommunikationseinheit werden bereitgestellt. Siehe Abschnitt zu Motor- und Treiberausführungen auf den Seiten II-188 bis II-192
- (6) Netzkabel direkt anschließen.

Anmerkungen

- 1. Die in () angeführten Kabel für Motor, Impulssignal, Endsensoren sowie Signalwandler besitzen eine hohe Biegesteifigkeit.
- 2. Die Längen der Kabel für Motor, Signalwandler, SV-NET, Impulssignal and Endsensoren können mithilfe der Box () am Ende der Produktbezeichnung ausgewählt werden. Bis zu 3 m können in Schritten von 1 m angegeben werden. (Für 3 m: EU9614N30, TAE10U5-LD03) Wenn Sie Kabel über 3 m Länge verwenden, bitte **IK** kontaktieren.
- 3. Die Länge des Impulssignalkabels und Endsensorkabels beträgt jeweils 1,5 m.

Parametereinstellung für den Treiber

AC-Servomotor für den Treiber erfordert eine Grundeinstellung der Parameter. In der Parametereinstellung sind Kommunikationseinheit, RS232C-Kabel und SV-NET-Kabel erforderlich. Bitte geben Sie eine separate Bestellung auf. Software für die Einstellung kann auf der Homepage von Tamagawa Seiki Co., Ltd unter folgendem Link heruntergeladen werden: http://sv-net.tamagawa-seiki.com/en/index.html Diese Kabel können von mehr als zwei Treibern geteilt werden. Bitte geben Sie eine Bestellung gemäß Ihren Anforderungen auf.

Motor- und Treiberausführungen -

AC-Servomotor von Tamagawa Seiki Co., Ltd. (RoHS-konform)

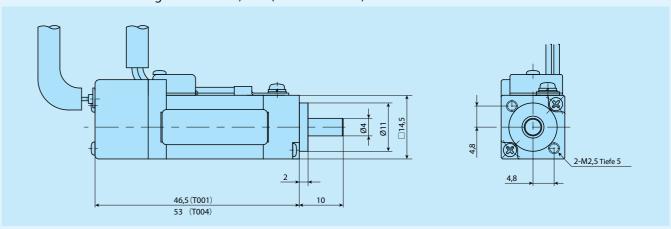


Table 9 Motorausführungen

able 5 Motorausramangen									
Motor- code	Modellnummer des Motors	Spannungs- angabe V	Nenn- leistung W	Nenn- dreh- moment N•m	Kurzzeitiger max. Drehmoment N•m	Nenndreh- zahl r/min	Motorträgheit J _м ×10⁴kg∙m²	Ausführung des Resolvers Puls/Umd.	Masse kg
T001	TS4861N4020E500	24	4	0,0095	0,0285	4 000	0,00064	2 048	0,05
T004	TS4862N4021E500	24	6,6	0,0159	0,0477	4 000	0,00096	2 048	0,06

Anmerkung: Motordrehmoment nimmt ab, wenn die Drehzahl des Motors des Motors 4 000 r/min übersteigt.

Tabelle 10 Ausführungen der Verkabelung für Motor und Anschlüsse

	Moto	orcode T001, T004	Motorcoitia	Cogonsoitia (1)	
Pin Nr.	Code	Inhalt	Farbe der Zuleitung	Motorseitig	Gegenseitig (1)
A1	U	Motor U Phase	Rot	Steckergehäuse 178964-3	Anschlusssteckergehäuse 178289-3
A2	V	Motor V Phase	Weiß		
A3	W	Motor W Phase	Schwarz		
B1	E	Massekabel	Grün	Steckerkontakt - 175287-2	Anschlusssteckerkontakt 175218-2
B2	_	_	_		
B3	_	_	_		

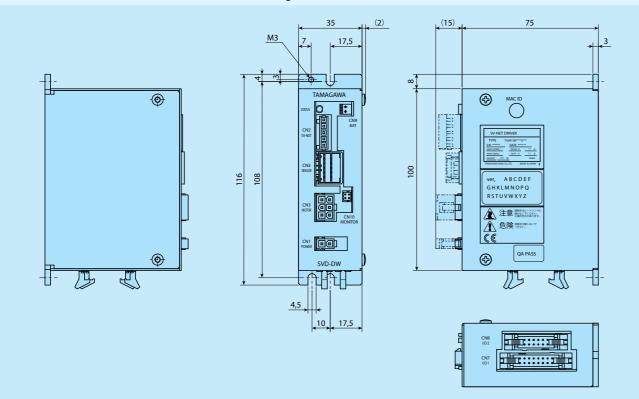

Hinweis (1) Der gegenseitige Anschluss muss durch den Kunden bereitgestellt werden. Anmerkung: Der Anschluss wird von Tyco Electronics Japan G.K. hergestellt.

Tabelle 11 Ausführungen für Verkabelung des Signalwandlers und Anschlusses

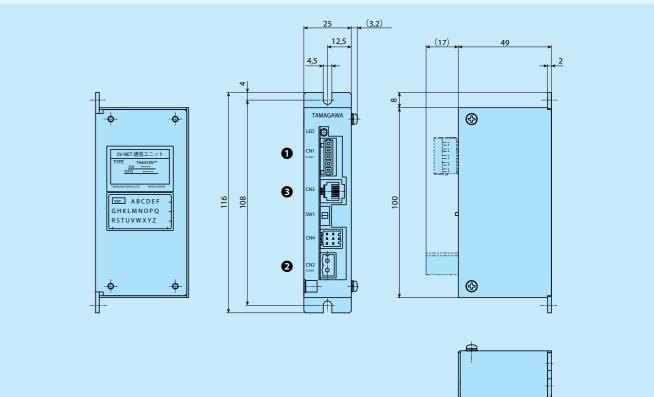
	Moto	orcode T001, T004	Motorseitig	Gegenseitig (1)	
Pin Nr.	Code	Inhalt	Farbe der Zuleitung	Motorsettig	Gegenseing (*)
A1	S2	Signalausgang	Gelb	Steckergehäuse - 1-1318115-6	Anschlusssteckergehäuse 1-1318118-6
A2	S1	Signalausgang	Rot		
A3	R1	Anregungssignal	Weiß		
B1	S4	Signalausgang	Blau	Steckerkontakt - 1318112-1	Anschlusssteckerkontakt 1318108-1
B2	S3	Signalausgang	Schwarz		
B3	R2	Anregungssignal	Orange		

Hinweis (1) Der gegenseitige Anschluss muss durch den Kunden bereitgestellt werden. Anmerkung: Der Anschluss wird von Tyco Electronics Japan G.K. hergestellt.

Tabelle 12 Treiber für AC-Servomotor T001 und T004 von Tamagawa Seiki Co., Ltd. (RoHS-konform)

Nr.	Name		Funktion	
0	CN1	Stromanschlussstecker	An den Stromanschluss anschließen.	
e e	CN2 SV-NET-Anschluss		Beim Einstellen der Parameter mit SV-NET-Kabel an Kommunikationseinheit anschließen.	
_		Anschluss Stromversorgungskontrolle	Beim Fahren an Stromversorgungskontrolle anschließen.	
ß	CN3	Motoranschluss	Verbinden Sie diesen Anschluss mit einem Motorkabel.	
4	CN5	Sensor-Anschluss	Verbinden Sie diesen Anschluss mit einem Kabel für Resolversignal.	
6	CN7	I/O-Anschluss	Verbinden Sie diesen Anschluss mit einem Impulssignalkabel.	
Ð	CN8	I/O-Anschluss	verbinden die diesen Anschluss mit einem impuissignalkabei.	

Tabelle 13 Ausführungen des AC-Servomotors T001 und T004


Modellnummer des Treibers	TA8410N7318E936	TA8410N7318E951	
Anwendbarer Motorcode	T001	T004	
Nennleistung des	4W	6.6W	
anwendbaren Motors	400	0.000	
Feedback	Bürstenlos	er Resolver	
Ausgewähltes System des	CW/CCW-Signal, Impuls-S	ignal/Drohrichtungssignal	
Impulseingangs	CW/CCW-Signal, Impuls-S	igital/Dietiticiturigssigital	
Ausgewählte Methode des	Leitungstreiber, offener Kollektor		
Impulseingangs	Letturigstreiber, offener Kollektor		
Versorgungsspannung	DC24V ±10%		
Hauptkreis	DC214		
Stromversorgung Regelkreis	DC24V	±10%	
Dauerausgangsstrom Arms	0,68	1,000	
Max. Ausgangsstrom Arms	1,92	2,875	
Betriebstemperaturspanne	0~40℃		
Lagertemperaturspanne	−20~85 °C (Vor Frost schützen)		
Betriebsfeuchtigkeit	90 % oder weniger (kondensfrei halten)		
Masse kg	0,:	30	

Anmerkung: DC24V-Stromversorgung muss durch den Kunden bereitgestellt werden.

Tabelle 14 Zubehör für die Treiber für AC-Servomotor T001 und T004

Name		Inhalt	Modellnummer	Anmerkung	
CN1	Stromanschlussstecker	Anschlusssteckergehäuse	5557-02R	Hergestellt von Molex Japan Co.,	
CIVI	Stromanschlussstecker	Hauptanschluss	5556TL	Ltd.	
CN2	Anschluss	Anschlussstecker	734-105	WAGO Company Japan, Ltd.	
CIVE	Stromversorgungskontrolle	Alischiassicekei	751 105	Witeo Company Supan, Eta.	
CN7	I/O-Anschluss	Buchse	HIF3BA-16D-2.54R		
CN8	I/O-Anschluss	Buchse	HIF3BA-14D-2.54R	Hergestellt von Hirose Electric Co.,	
CN10	Anschlüsse für analogen	Buchse	DF-4DS-2C	Ltd.	
CIVIO	Monitor	Kontakt	DF11-2428SC		

Tabelle 15 Kommunikationseinheit für AC-Servomotor T001 und T004 von Tamagawa Seiki Co., Ltd. (RoHS-konform)

Nr.		Name	Funktion
0	CN1	Kommunikationsanschluss	Mit SV-NET-Kabel an Treiber anschließen.
9	CN2	Stromversorgungsanschluss	Verbinden Sie diesen Anschluss mit einer Stromversorgung.
6	CN3 Anschluss		Mit einem RS232C-Kabel mit einem PC verbinden.

Anmerkung: Kommunikationseinheit wird bei der Einstellung der Parameter für den Treiber verwendet. Systemkonfigurationen bei der Parametereinstellung finden Sie im Abschnitt Systemkonfiguration auf der Seite II-187.

Tabelle 16 Ausführungen der Kommunikationseinheiten für AC-Servomotor T001 und T004

Modellnummer der		TA8433N211	
Kommunikationseinheit		17043314211	
Fin man manna.		DC24V ±10%	
Eingangsspannung		(Versorgungsspannung 0,1 A)	
Ausgangsspannung		DC24V ±10%	
Stromversorgungskontrolle		DC24V ±10%	
Anschlussart	PC-seitig	RS232C-Kabel	
Alischlussart	Treiberseitig	SV-NET Kabel	
Betriebstempe	eraturspanne	0~40 ℃	
Lagertemperaturspanne		−10 ~ 85 °C (Vor Frost schützen)	
Betriebsfeuchtigkeit		90 % oder weniger (kondensfrei halten)	
Masse kg		0,2	
A DC	2016	1 1 1 1/2 1 1 2 4 116	

Anmerkung: DC24V-Stromversorgung muss durch den Kunden bereitgestellt werden

Tabelle 17 Zubehör der Kommunikationseinheiten für AC-Servomotor T001 und T004

Tabelle 17 Zubenot der Kommunikationsemmerten für Servomotor 1001 und 1004				
Name		Inhalt Modellnummer		Anmerkung
CN1	Kommunikationsanschluss	Anschlussstecker	734-105	WAGO Company Japan, Ltd.
CN2	Stromyersorgungsanschluss	Anschlussstacker	231-102/026-000	WAGO Company Japan, Ltd.

Schrittmotor von Tamagawa Seiki Co., Ltd. (RoHS-konform)

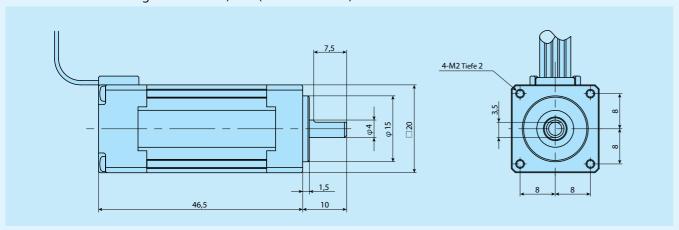


Tabelle 18 Motorausführungen

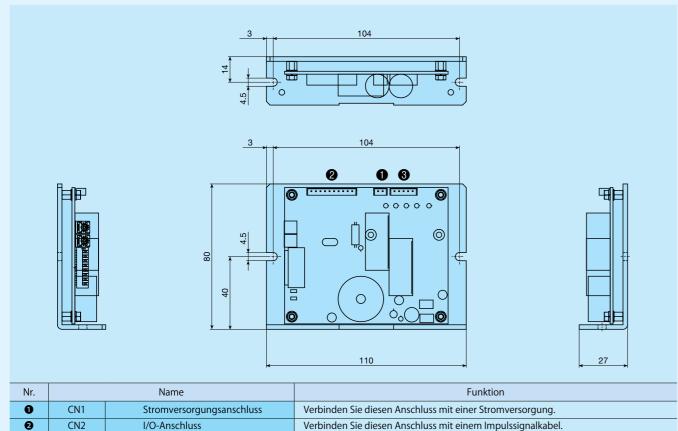

Motor- code	Modellnummer des Motors	Schritt Winkel	Maximaler Haltedrehmoment N • m	Stromstärke A/Phase	Rotorträgheit J _M ×10⁻⁴kg•m²	Masse (Ref.) kg
T002	TS3682N2	0,72	0,024	0,35	0,004	0,085
T003	TS3692N2	1,80	0,024	0,35	0,004	0,085

Tabelle 19 Ausführungen der Verkabelung für Motor und Anschlüsse

Pin Nr.	Farbe der	Zuleitung	Matarcaitia	Gegenseitig (1)	
FIII INI.	Motorcode T002 Motorcode T003		Motorseitig	degenseing ()	
1	Blau	Schwarz	Gehäuse	Gehäuse	
2	Rot	Nicht erforderlich		43020-0600	
3	Orange	Blau	43025-0600	45020-0000	
4	Grün	Rot	Hauptanschluss	Hauptanschluss	
5	Schwarz	Orange	43030-0007	43031-0007	
6	Nicht erforderlich	Grün	43030-0007	43031-0007	

Hinweis (1) Der gegenseitige Anschluss muss durch den Kunden bereitgestellt werden. Anmerkung: Anschlüsse werden hergestellt von Molex Japan Co., Ltd.

Table 20 Treiber für Schrittmotor T002 von Tohan Denshi Kiki Co., Ltd. (RoHS-konform)

Verbinden Sie diesen Anschluss mit einem Motorkabel.

Table 21 Treiberausführungen für Schrittmotor T002

Modellnummer des Treibers	TD-5M13-L		
Anwendbarer Motorcode	T002		
Anregungsart	Mikroschritt Max. 500er Teilung		
Eingangsmethode	Optokoppler Eingangswiderstand 220Ω		
Eingangsformat	CW/CCW-Signal		
Lingangsionnat	Impuls-Signal/Drehrichtungssignal		
Leistungsaufnahme	DC15 bis 35 V 2,5 A		
Umgebungstemperatur	0~40 °C (Vor Frost schützen)		
(im Betrieb)	0 40 C (VOLTIOSE SCHULZCH)		
Umgebungsfeuchtigkeit	85 % oder weniger (kondensfrei halten)		
(im Betrieb)	05 /0 oder weringer (kondensirer nattern)		
Masse kg	0,17		

Anmerkung: DC24V wird für die Leistungsaufnahme empfohlen. Die Stromversorgung muss durch den Kunden bereitgestellt werden.

Drehmomenttabelle für Schrittmotor T002

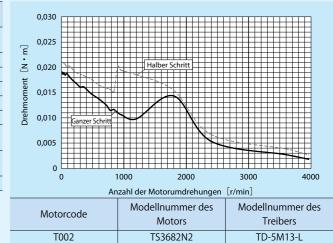


Tabelle 22 Zubehör für Treiber für Schrittmotor T002

	Name		Modellr	Anmorkung	
			Gehäuse	Kontakt	Anmerkung
	CN1	Stromversorgungsanschluss	EHR-2		
	CN2	Regelsignalanschlüsse	EHR-10	BEH-001T-P0.6	JST Mfg. Co., Ltd.
	CN3	Stromanschlussstecker	EHR-5		

Tabelle 23 Treiber für Schrittmotor T003 von Tohan Denshi Kiki Co., Ltd. (RoHS-konform)

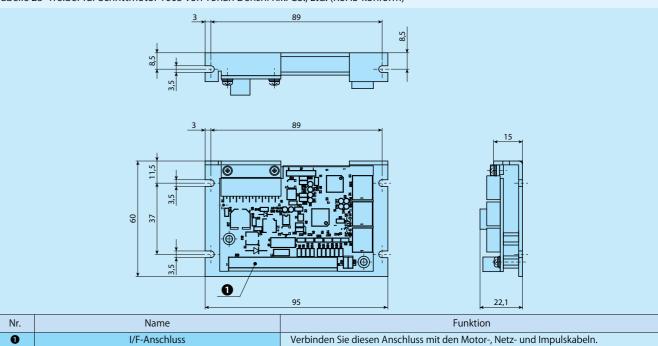
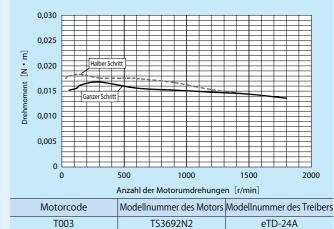



Table 24 Treiberausführungen für Schrittmotor T003

Table 24 Treiberaustumungen für Schittimotor 1005			
Modellnummer des Treibers	eTD-24A		
Anwendbarer Motorcode	T003		
Anregungsart	Mikroschritt Max. 500er Teilung		
Eingangsmethode	Optokoppler Eingangswiderstand 220Ω		
Eingangsformat	CW/CCW-Signal Impuls-Signal/Drehrichtungssignal		
Leistungsaufnahme	DC24 V ± 10 % 3 A		
Umgebungstemperatur (im Betrieb)	0~40°C (vor Frost schützen)		
Umgebungsfeuchtigkeit (im Betrieb)	85 % oder weniger (kondensfrei halten)		
Masse kg	0,06		

 $\label{lem:continuous} \textbf{Anmerkung: DC24V-Stromversorgung muss durch den Kunden bereitgestellt}$ werden.

Drehmomenttabelle für Schrittmotor T003

1mm=0,03937 Zoll

1N=0,102kgf=0,2248lbs.

II-191

CN3

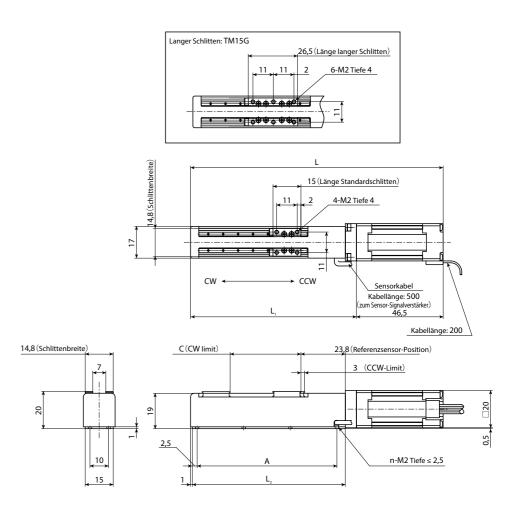
Motoranschluss

6

IIC Mikro-Präzisionspositioniertisch TM

TM15 Ausführungen des AC-Servomotors

Ein	heit:	mm


İ		Hublänge								
	Modell und Größe		Position CW-Limit -		Gesamtlänge L			Gewindebohrunge Tisches	en des	Masse (1) (Ref.)
	Modell und Globe	Tatsächliche Hublänge (²)	C	T001	T004	L,	L ₂	A (Anzahl Bohrungen× Abstand)	n	kg
	TM15 -20	20	16	115,5	122	69	62	50 (2×25)	6	0,15
	TM15 -40	40	36	135,5	142	89	82	75 (3×25)	8	0,16
	TM15 -60	60	56	155,5	162	109	102	96 (4×24)	10	0,17
	TM15G-10	10	4,5	115,5	122	69	62	50 (2×25)	6	0,16
	TM15G-30	30	24,5	135,5	142	89	82	75 (3×25)	8	0,17
	TM15G-50	50	44,5	155,5	162	109	102	96 (4×24)	10	0,18

Hinweise (1) Gibt den Wert an, wenn T001 ausgewählt wurde. Es ist 0,01 kg schwerer wenn T004 ausgewählt wurde.

(2) Die Sensorposition kann nicht angepasst werden. Die tatsächliche Hublänge gibt die Hublänge an, die zwischen den Endsensoren sicher erreicht werden kann.

Anmerkung: Eine Kunststoffabdeckung wird verwendet, allerding kann auch eine Abdeckung aus Edelstahl hergestellt werden. Falls erforderlich, bitte **IKU** kontaktieren.

TM15 Ausführungen des Schrittmotors

Einheit: mm

	Hublänge							
Modell und Größe	Wirksame Hublänge (1)	Position CW-Limit C	Gesamtlänge L	L,	L ₂	Gewindebohrunge Tisches A (Anzahl Bohrungen× Abstand)	en des n	Masse (Ref.) kg
TM15 -20	20	19	115,5	69	62	50 (2×25)	6	0,18
TM15 -40	40	39	135,5	89	82	75 (3×25)	8	0,19
TM15 -60	60	59	155,5	109	102	96 (4×24)	10	0,20
TM15G-10	10	7,5	115,5	69	62	50 (2×25)	6	0,19
TM15G-30	30	27,5	135,5	89	82	75 (3×25)	8	0,20
TM15G-50	50	47,5	155,5	109	102	96 (4×24)	10	0,21

Hinweis (1) Die Sensorposition kann nicht angepasst werden. Die tatsächliche Hublänge gibt die Hublänge an, die zwischen den Endsensoren sicher erreicht werden kann.

Anmerkung: Eine Kunststoffabdeckung wird verwendet, allerding kann auch eine Abdeckung aus Edelstahl hergestellt werden. Falls erforderlich, bitte **IKU** kontaktieren.

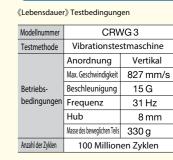
Gestell

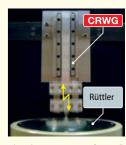
Kreuzrollenführung

Vorteile

Hochpräziser und kompakter Positioniertisch


Hochpräziser und kompakter Positioniertisch mit Kreuzrollenführung verbaut in einem vibrationshemmenden gusseisernen Gestell.


Sicheres Design mit Verhinderung des K\u00e4figwanderns


Die Verwendung einer Kreuzrollenführung mit Käfigzwangsführung, die keine Käfigwanderung in der Rollenführung verursacht, ermöglicht eine sichere Verwendung des Tisches selbst in der vertikalen Achse und bei Betrieb mit hohen Beschleunigung / Verzögerung. (TS55/55 und CT55/55 nicht enthalten.)

Optimal für direkt auf der Oberfläche des Tisches ausgeführte Arbeiten

Die Verwendung eines großen, präzise polierten Tisches ermöglicht Ihnen die Verwendung der gesamten Tischoberfläche als Arbeitsfläche.

《Ergebnis》 Käfigwandern oder Materialbeschädigungen wurden in keiner Komponenten festgestellt

Variation

Form	Model	Tischbreite	Tischlänge (mm)					
FOIIII	Model	(mm)	55	75	125	220	310	350
Ausführung mit einer Achse		55	\Rightarrow	_	_	_	_	_
8 8 8	TS	75	_	\Rightarrow	_	_	_	_
		125	_	_	☆	☆	_	_
		220	_	_	_	☆	☆	_
		260	١	_	_	_	_	☆
Ausführung mit zwei Achsen	СТ	55	\Rightarrow	_	_	_	_	_
		75	_	☆	_	_	_	_
© ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °		125	_	_	☆	_	_	_
		220	_	_	_	\Rightarrow	_	_
• •		260	_	_	_	_	_	\Rightarrow
		350	_	_	_	_	_	\Rightarrow

verwendet Kreuzrollenführung mit Käfigzwangsführung.

Wichtige Produktbeschreibungen

Kreuzrollenführung

Gestell

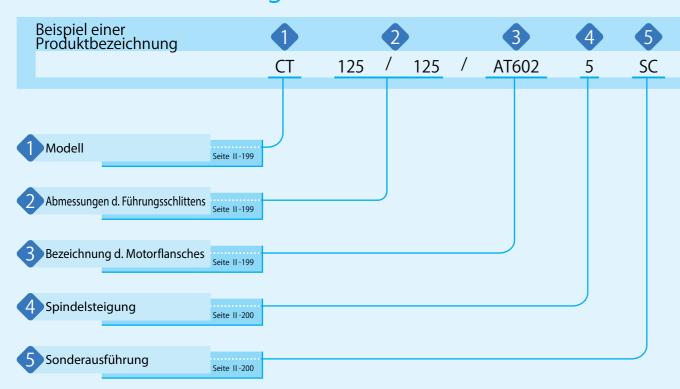
Antriebsmethode	Präzisionsspindel
Wälzkörper-Linearführung	Kreuzrollenführung
Eingebaute Schmierplatte	Nicht eingebaut
Tisch- und Gestellmaterial	Gusseisen
Sensor	Nach Produktbezeichnung auswählen

Genauigkeit

	Einheit: mm
Wiederholgenauigkeit	±0,002~0,003
Positioniergenauigkeit	0,005~0,025
Leerlauf	_
Parallelität der Tischbewegung A	0,005~0,012
Parallelität der Tischbewegung B	0,015~0,030
Verwindungsgenauigkeit	_
Geradheit	_
Umkehrspiel	_

Führungsschlitten

Y-Tisch


Spindel

X-Tisch

Sensor

1N=0,102kgf=0,2248lbs. 1mm=0,03937 Zoll

Produktbezeichnung

Produktbezeichnung und Ausführung -

1 Modell	TS : Präzisionspositioniertisch TS (Ausführung mit einer Achse) CT : Präzisionspositioniertisch CT (Ausführung mit zwei Achsen)
2 Abmessungen d.Führungsschlittens	Wählen Sie eine Führungsschlittenabmessung aus der Liste in Tabelle 1.
	Breite und Länge des Führungsschlittens werden in mm angegeben. Für CT (Ausführung mit zwei Achsen) werden Breite und Länge des Y-Tisches angegeben.

Tabelle 1 Modelle der Rollenumlaufführung/Abmessungen Führungsschlitten und Hublänge

_					
Fi	nŀ	٦Δ	it٠	m	m

e endgültige

Modell	Wälzkörper-Linearführung	Breite/Länge	Hublänge
	Kreuzrollenführung	55/ 55	15
		75/ 75	25
		125/125	50
TS	Kreuzrollenführung	125/220	120
	mit Käfigzwangsführung	220/220	120
		220/310	180
		260/350	250
	Kreuzrollenführung	55/ 55	X-Achse: 15, Y-Achse: 15
		75/ 75	X-Achse: 25, Y-Achse: 25
СТ	Kreuzrollenführung	125/125	X-Achse: 50, Y-Achse: 50
CI	mit Käfigzwangsführung	220/220	X-Achse: 120, Y-Achse: 120
	Thir rangzwangstuniung	260/350	X-Achse: 150, Y-Achse: 250
		350/350	X-Achse: 250, Y-Achse: 250

Bezeichnung d.Motorflansches	Wählen Sie zur Angabe des Motorflansches eine Bezeichnung aus Tabelle 2.
	Motor sollte durch den Kunden montiert werden.
	Bitte geben Sie die für den zu verwendenden Motor anwendbaren Motorflansch an.
	• Eine in Tabelle 3 dargestellte Kupplung wird vor dem Versand auf dem Tisch montiert. Die end
	Anpassung sollte jedoch durch den Kunden erfolgen, da sie nur vorübergehend fixiert wird.

Tabelle 2 Ausführung des Motorflansches

Zu verwendender Motor					Motorflansch				
Art	Hersteller	Baureihe	Modell	Nenn- leistung W	Flansch- größe mm	TS55/55 TS75/75 CT55/55 CT75/75	TS125/125 TS125/220 TS220/220 CT125/125 CT220/220	TS220/310	TS260/350 CT260/350 CT350/350
	VACKANA		SGMJV-01A	100		_	AT602	AT604	_
	YASKAWA	Σ-V	SGMAV-01A	100	□40	_	AT602	AT604	_
	ELECTRIC	≥-V	SGMJV-02A	200		_	_	_	AT606
	CORPORATION		SGMAV-02A	200	□60	_	_	_	AT606
	Mitsubishi Electric		HF-MP13, HG-MR13	100	□40	_	AT602	AT604	_
			HF-KP13, HG-KR13	100	□40	_	AT602	AT604	_
AC-Servo-	Corporation		HF-MP23, HG-MR23	200	□60	_	_	_	AT606
motor			HF-KP23, HG-KR23			_	_	_	AT606
motor			MSMD01	100 200	□38	_	AT603	AT605	_
	Panasonic	poration MINAS A5	MSME01			-	AT603	AT605	_
	Corporation		MSMD02		□60	_	_	_	AT607
			MSME02			-	_	_	AT607
	Hitachi Industrial		ADMA-01L	100	□40	_	AT602	AT604	_
	Equipment Systems Co., Ltd	AD	ADMA-02L	200	□60	_	_	_	AT606
			AS66		□60	_	AT608	AT609	_
		α Schritt	AS69		□60	_	AT608	AT609	_
Schritt-	ORIENTAL	a scillill	AS98		□85	_	_	_	AT610
motor	MOTOR Co., Ltd.		AS911		□85	_	_	_	AT610
1110101	MOTOR Co., Ltu.	PX	PX535MH		□38	AT601	_	-	_
		RK • CRK	RK56 • CRK56	(1)	□60	-	AT608	AT609	_
		THE CHIE	RK59		□85	_	_	_	AT610

Hinweis (1) Gilt für den Außendurchmesser Ø8 der Motorwelle

Anmerkung: Detaillierte Motorspezifikationen finden Sie in dem jeweiligen Katalog des Herstellers.

Tabelle 3 Kupplungsmodelle

Motorflansch	Kupplungsmodelle	Hersteller	Trägheitsmoment der Kupplung J _c ×10 ⁻⁵ kg • m ²
AT601	MWSS-12- 5× 5	Nabeya Bi-tech Kaisha	0,018
AT602	MSTS-25C- 8× 8	Nabeya Bi-tech Kaisha	0,71
AT603	MSTS-25C- 8× 8	Nabeya Bi-tech Kaisha	0,71
AT604	MSTS-25C- 6× 8	Nabeya Bi-tech Kaisha	0,71
AT605	MSTS-25C- 6× 8	Nabeya Bi-tech Kaisha	0,71
AT606	MSTS-32C-12×14	Nabeya Bi-tech Kaisha	2,7
AT607	MSTS-32C-11×12	Nabeya Bi-tech Kaisha	2,7
AT608	MSTS-19C- 6× 8	Nabeya Bi-tech Kaisha	0,277
AT609	MSTS-25C- 6× 8	Nabeya Bi-tech Kaisha	0,71
AT610	MSTS-32C-12×14	Nabeya Bi-tech Kaisha	2,7

Anmerkung: Detaillierte Angaben zu den Kupplungen finden Sie im jeweiligen Katalog des Herstellers.

4 Spindelsteigung

- 1: Steigung 1 mm (gilt für 55/55, 75/75 und 125/125)
- 2: Steigung 2 mm (gilt für 55/55 oder 75/75)
- 5: Steigung 5 mm (gilt für 55/55 oder 75/75)

5 Sonderausführung

Kein Symbol : Standardausführung

AL : Tisch aus Aluminiumlegierung (gilt nicht für 55/55 oder 75/75)

BE : Option mit Basisplatte (gilt für 55/55)
LR : Schwarzchromatierung der Oberflächen

SC : Tisch mit Sensoren

Tisch aus Aluminiumlegierung : Ausführung bei der Führungsschlitten, Gestell und Motorhalterung aus einer

Guss-Aluminiumlegierung hergestellt werden. Die Genauigkeit unterscheidet

sich von der der Standardausführung.

Option mit Basisplatte : Eine Basisplatte ist verfügbar, wenn der Schlitten hängend montiert wird.

Detaillierte Informationen finden Sie in der Maßtabelle.

Schwarzchromatierung der Oberflächen : Zur Verbesserung der Korrosionsbeständigkeit wird auf die Oberflächen eine schwarze Chrombeschichtung aufgetragen

Die Oberflächen von Führungsschlitten, Gestell und Motorhalterung werden beschichtet.

Auf den Referenzoberflächen der jeweiligen Teile kann keine

Oberflächenbehandlung aufgetragen werden.

Tisch mit Sensoren : Ein Set aus Endsensor, Vor-Referenzsensor und Referenzsensor ist angebracht.

Sollte ein AC-Servomotorflansch ausgewählt werden, wird kein Referenzsensor bereitgestellt. Bitte C-Phase oder Z-Phase des Encoders verwenden.

Anmerkung: Bei der Verwendung von mehreren Sonderausführungen zur Kombination, bitte bei der Angabe die Zusatzcodes in alphabetischer Reihenfolge anordnen.

1N=0,102kgf=0,2248lbs.

1mm=0,03937 ZoII II - 200

Einheit: mm

Ausführungen •

Tabelle 4 Genau	Tabelle 4 Genauigkeit Einheit: mm							
Produk	tbezeichnung		Positionier-	Parallelität der	Parallelität der	Rechtwinkligkeit der		
Ausführung mit	Ausführung mit zwei	Wiederholgenauigkeit	genauigkeit	Tischbewegung A	Tischbewegung B	XY-Bewegung (1)		
einer Achse	Achsen		g=g					
TS 55/ 55	_		0,005					
_	CT 55/ 55		0,010					
TS 75/ 75	CT 75/ 75		0,005	0,005 (0,008)	0,015 (0,022)			
TS125/125	CT125/125		(0,008)			0,005		
TS125/220	_	±0,002 (±0,003)	0,008					
TS220/220	CT220/220	(±0,003)	(0,012)					
TS220/310	_		0,015	0,008	0,020			
TS260/350	CT260/350		(0,025)	(0,012)	(0,030)	0,008		
_	CT350/350		(0,023)	(0,012)	(0,030)			

Hinweis (1) Gilt für Tische mit zwei Achsen.

Anmerkung: Die Werte in () beziehen sich auf den Tisch aus Aluminiumlegierung (Spezialausführung AL) und unterscheiden sich von den Werten des Tisches in Standardausführung.

Tabelle 5 Maximale Geschwindigkeit

Motormodell	Maximale Geschwindigkeit mm/s						
Motormodeli	Steigung 1 mm	Steigung 2mm	Steigung 5 mm				
AC-Servomotor	50	100	250				
Schrittmotor	30	60	150				

Anmerkung: Um die durchführbare, maximale Geschwindigkeit zu ermitteln, müssen die Betriebsbedingungen des zu verwendeten Motors und die Lastbedingungen berücksichtigt werden.

Tabelle 6.1 Maximale Belastung von TS

Modell und Größe	Spindelsteigung mm	Maximale Belastung kg			
	111111	Horizontal	Vertikal		
TS 55/ 55	1	4,3	2,2		
TS 75/ 75	1	21	1,5		
	1	72	2,3		
TS125/125	2	72	11		
	5	72	29		
TS125/220	2	115	9		
13123/220	5	115	28		
TS220/220	2	169	3,9		
13220/220	5	169	24		
TS220/310	2	256	_		
13220/310	5	216	19		
TS260/350	2	310	_		
13200/330	5	310	18		

Anmerkung: Funktioniert nicht, wenn die Maximale Belastung "-" beträgt.

Tabelle 6.2 Maximale Belastung von CT

Modell und Größe	Spindelsteigung mm	Maximale Belastung kg			
	111111	Horizontal	Vertikal (¹)		
CT 55/ 55	1	4,3	2,2		
CT 75/ 75	1	21	1,3		
	1	72	2,3		
CT125/125	2	72	11		
	5	72	29		
CT220/220	2	169	3,9		
C1220/220	5	169	24		
CT260/350	2	225	_		
C1200/330	5	225	18		
CT350/350	2	286	_		
C1330/330	5	310	14		

Hinweis (1) Wenn sich die Y-Achse vertikal bewegt.

Anmerkung: Funktioniert nicht, wenn die Maximale Belastung "-" beträgt.

Tabelle 7 Ausführungen der Spindel

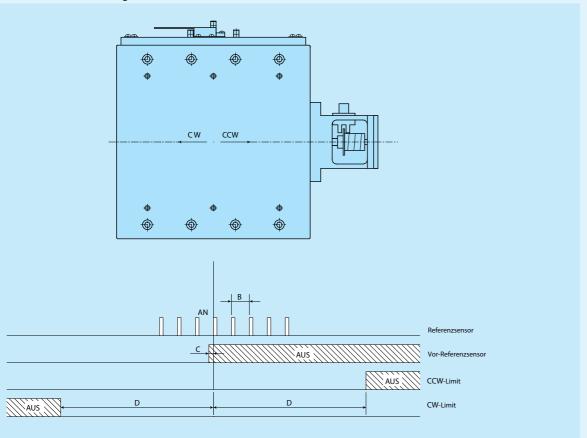
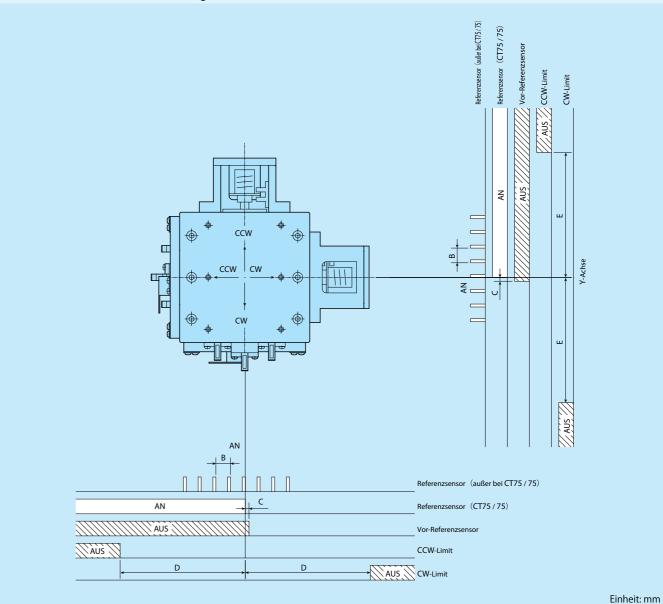

	Modell und Größe	Spindelsteigung	Achsenname	Schaftdurchmesser	Gesamtlänge	
	TS 55/ 55	1	-	6	68	
	TS 75/ 75	1	-	6	89	
e e		1	-	12	148	
Ç	TS125/125	2	-	12	148	
Ausführung mit einer Achse		5	-	14	148	
ein	TS125/220	2	_	12	269	
ä	13123/220	5	-	14	269	
ng	TS220/220	2	-	14	269	
hr	13220/220	5	-	14	269	
ısfü	TS220/310	2	-	14	389	
Ψ	15220/310	5	-	14	389	
	TS260/350	2	-	20	435	
	15200/350	5	-	20	435	
	CT 55/ 55	1	X-Achse, Y-Achse	6	68	
	CT 75/ 75	1	X-Achse, Y-Achse	6	89	
e		1	X-Achse, Y-Achse	12	148	
chs	CT125/125	2	X-Achse, Y-Achse	12	148	
<u></u>		5	X-Achse, Y-Achse	14	148	
Ausführung mit zwei Achsen	CT220/220	2	X-Achse, Y-Achse	14	269	
ij	C1220/220	5	X-Achse, Y-Achse	14	269	
ng I		2	X-Achse	20	330	
hru	CT260/350	2	Y-Achse	20	435	
sfü	C1260/330	5	X-Achse	20	330	
Au		J	Y-Achse	20	435	
	CT250/250	2	X-Achse, Y-Achse	20	435	
	C1330/330	5	X-Achse, Y-Achse	20	435	
Ą	CT350/350	2	X-Achse, Y-Achse	20	435	

Tabelle 8 Trägheits- und Anlaufmoment des Tisches

	Produktbezeichnung		Trà	igheitsmoment des Tisches ×10 ⁻⁵ kg•m²	5 J _T	Anlaufmoment T _s	
			Steigung 1 mm	Steigung 2mm	Steigung 5 mm	IN-III	
ē	TS 55/ 55		0,01	-	_	0,03	
e.	TS 75/ 75		0,01	_	_	0,03	
Ausführung mit einer Achse	TS125/125		0,20	0,23	0,55	0,07	
ung m Achse	TS125/220		-	0,40	0,95	0,07	
hrd	TS220/220		-	0,73	1,1	0,07	
ısfü	TS220/310		_	1,3	2,1	0,07	
Ā	TS260/350		_	3,8	5,6	0,07	
	CT 55/ 55	X-Achse	0,01	_	_	0,03	
_		Y-Achse	0,01	_	_	0,03	
ıseı	CT 75/ 75	X-Achse	0,01	_	_	0,07	
Act	C1 73/ 73	Y-Achse	0,01	_	_	0,07	
ĕ.	CT125/125	X-Achse	0,20	0,28	0,85	0,07	
ii N	C1123/123	Y-Achse	0,20	0,23	0,55	0,07	
E	CT220/220	X-Achse	-	0,85	1,9	0,07	
Ę	C1220/220	Y-Achse	-	0,73	1,1	0,07	
Ausführung mit zwei Achsen	CT260/350	X-Achse	-	4,6	6,8	- 0,07	
\ust	C1200/330	Y-Achse	_	3,8	5,6	0,07	
4	CT350/350	X-Achse –		4,9	8,0	0,07	
	C1330/330	Y-Achse	-	4,6	5,9	0,07	

Ausführung mit Sensoren

Tabelle 9.1 Sensor-Zeittafel für TS (Ausführung mit einer Achse)



Produktbezeichnung	Spindelsteigung	В	С	D	
TS 55/ 55	1	1	0,7	7,5	
TS 75/ 75	1	1	0,7	12,5	
	1	1	0,7		
TS125/125	2	2	1,5	25	
	5	5	3		
TS125/220	2	2	1,5	60	
13123/220	5	5	3	00	
TS220/220	2	2	1,5	60	
13220/220	5	5	3	00	
TS220/310	2	2	1,5	90	
13220/310	5	5	3	90	
TS260/350	2	2	1,5	125	
15260/350	5	5	3	125	

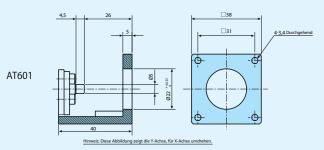
Anmerkungen

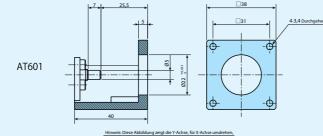
- 1. Die Montage eines Sensors wird unter Verwendung der entsprechenden Produktbezeichnung angegeben.
- 2. Die Ausführungen der jeweiligen Sensoren finden Sie im Abschnitt Sensorausführung unter Allgemeine Erläuterung.
- 3. Sollte ein AC-Servomotor-Motorflansch ausgewählt werden, wird kein Referenzsensor bereitgestellt. Bitte C-Phase oder Z-Phase des Encoders verwenden.
- 4. Die Befestigungsposition der Sensoren variiert in Abhängigkeit der Tischausführung. Detaillierte Informationen finden Sie in den Maßtabellen der jeweiligen Produktbezeichnungen.

Table 9.2 Sensor-Zeittafel für CT (Ausführung mit zwei Achsen)

Produktbezeichnung	Spindelsteigung	В	С	D	E	
CT 55/ 55	1	1	0,7	7,5	7,5	
CT 75/ 75	1	-	0,7	12,5	12,5	
	1	1	0,7			
CT125/125	2	2	1,5	25	25	
	5	5	3			
CT220/220	2	2	1,5	- 60	60	
C1220/220	5	5	3] 00	OU	
CT260/350	2	2	1,5	75	125	
C1200/330	5	5	3	/3	123	
CT350/350	2	2	1,5	125	125	
C1330/330	5	5	3	123	125	

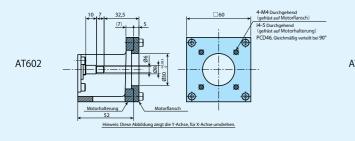
Anmerkungen

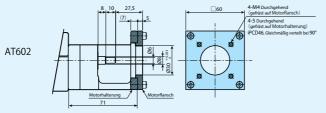

Einheit: mm

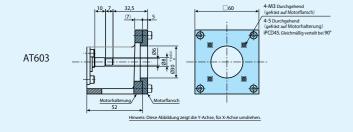

- 1. Die Montage eines Sensors wird unter Verwendung der entsprechenden Produktbezeichnung angegeben.
- $2.\, Die\, Ausführungen\, der jeweiligen\, Sensoren\, finden\, Sie\, im\, Abschnitt\, Sensorausführung\, unter Allgemeine\, Erläuterung.$
- 3. Sollte ein AC-Servomotor-Motorflansch ausgewählt werden, wird kein Referenzsensor bereitgestellt. Bitte C-Phase oder Z-Phase des Encoders verwenden.
- 4. Die Befestigungsposition der Sensoren variiert in Abhängigkeit der Tischausführung. Detaillierte Informationen finden Sie in den Maßtabellen der jeweiligen Produktbezeichnungen.

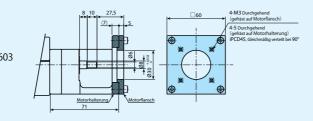
Abmessungen des Motorflansches

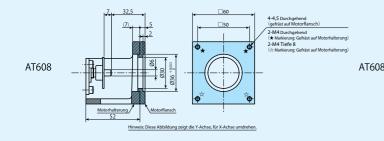
TS55/55, CT55/55

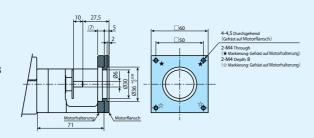

TS75/75, CT75/75

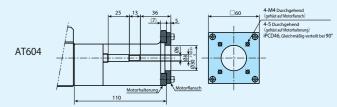


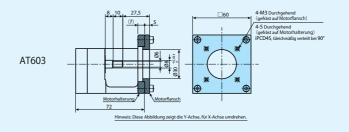


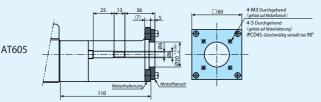

TS125/125, CT125/125

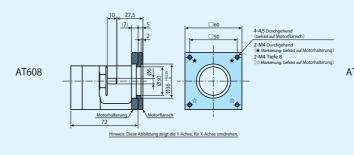

TS125/220

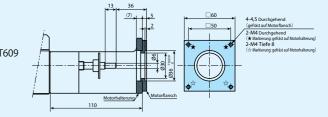


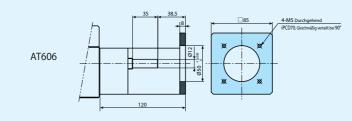


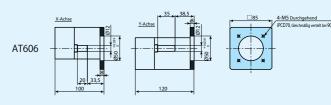


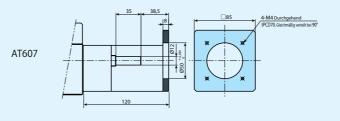


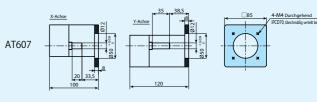

TS220/220, CT220/220

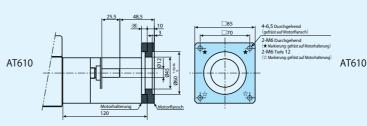

AT602 ##4 Durchgehend (gefast auf Motorializerung) ##5 Durchgehend (gefast auf Motorializerung) ##6 Durchgehend

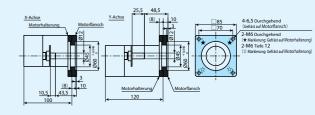


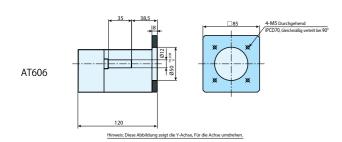


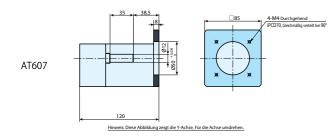

TS260/350

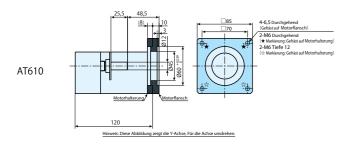

CT260/350


TS220/310



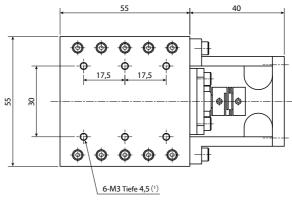


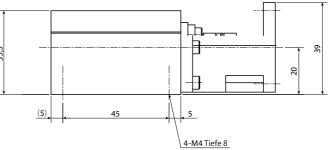


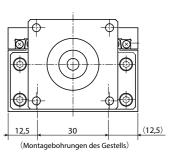


TS / C1

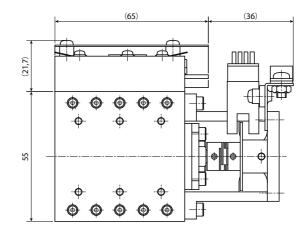
CT350/350

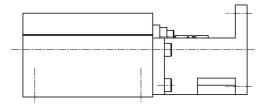


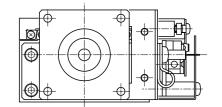



IIC Präzisionspositioniertisch TS / CT

TS55/55

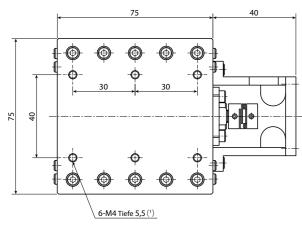

Ausführung ohne Sensor

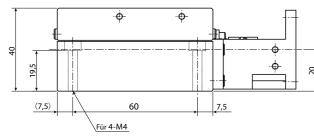


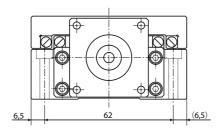


Ausführung mit Sensor

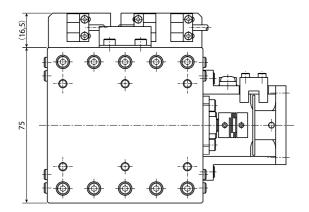
Hublänge: 15 mm Referenzmasse (²): 0,8 kg

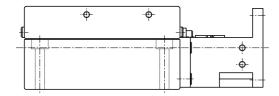

Hinweise (1) Wenn die Befestigungsschraube zu stark angezogen wird, kann die Laufleistung des Führungsschlittens beeinträchtigt werden, weshalb nie eine Schraube eingeführt werden sollte, die länger als die Durchgangsbohrung ist.

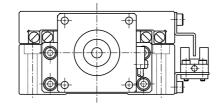

(2) Masse des Sensors ist nicht inbegriffen.


IIC Präzisionspositioniertisch TS / CT

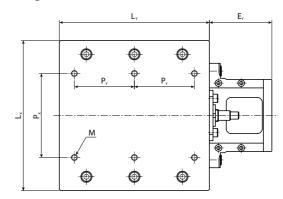
TS75/75

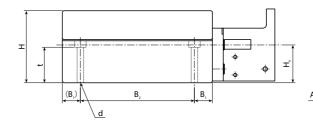

Ausführung ohne Sensor

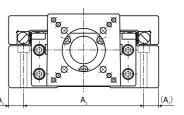




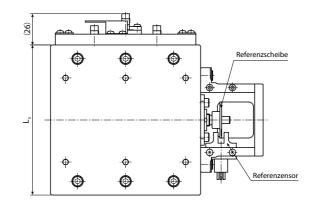
Ausführung mit Sensor

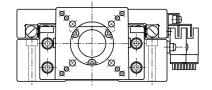

Hublänge: 25 mm Referenzmasse (2): 1,6 kg


Hinweise (1) Wenn die Befestigungsschraube zu stark angezogen wird, kann die Laufleistung des Führungsschlittens beeinträchtigt werden, weshalb nie eine Schraube eingeführt werden sollte, die länger als die Durchgangsbohrung ist.


(2) Masse des Sensors ist nicht inbegriffen.

TS125/125, TS220/220


Ausführung ohne Sensor



Ausführung mit Sensor

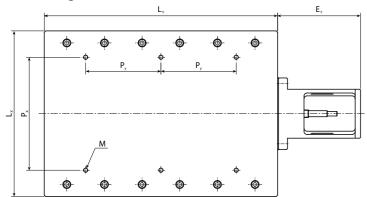
Hinweis) • Sollte ein AC-Servomotor-Motorflansch ausgewählt werden, werden kein Referenzsensor und keine Ausgleichsscheibe bereitgestellt.

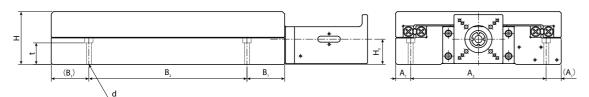
Einheit: mm

Due de data emeriado en en en	Abm	essungen des Tis	sches	Hublänge	Г	Höhe der Wellenachse	
Produktbezeichnung	L _x	L _y	Н	Hublange	Ε _γ	H _Y	
TS125/125 (1)	125	125	60	50	52	31,5	
TS220/220	220	220	65	120	72	33,5	

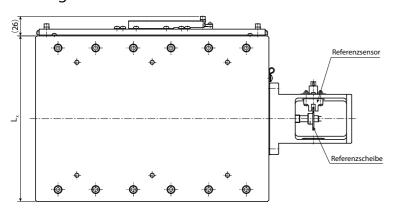
Produktbezeichnung	Befestigungsschraube				Referenzmasse (2)					
	M (3)	P _x	P _Y	d	t	Α,	A ₂	В,	B ₂	kg
TS125/125 (1)	6-M5 Tiefe 10	70	50	Für 4-M5	29,6	12,5	100	15	95	7,5
TS220/220	6-M6 Tiefe 12	150	75	Für 4-M6	27,5	20	180	20	180	16,0

Hinweise (1) Die Oberkante der Motorhalterung ist 1,5 mm höher als die Oberkante des Tisches.

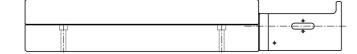

- (2) Masse des Sensors ist nicht inbegriffen.
- (3) Wenn die Befestigungsschraube zu stark angezogen wird, kann die Laufleistung des Führungsschlittens beeinträchtigt werden, weshalb nie eine Schraube eingeführt werden sollte, die länger als die Durchgangsbohrung ist.

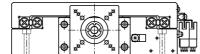

1N=0,102kgf=0,2248lbs. 1mm=0,03937 Zoll

IK Präzisionspositioniertisch TS / CT


TS125/220, TS220/310, TS260/350

Ausführung ohne Sensor



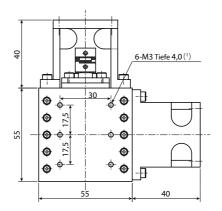


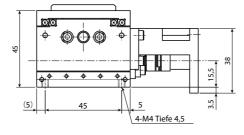
Ausführung mit Sensor

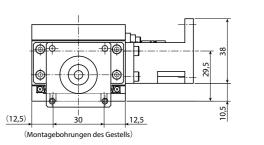
Hinweis) • Sollte ein AC-Servomotor-Motorflansch ausgewählt werden, werden kein Referenzsensor und keine Ausgleichsscheibe bereitgestellt.

Einheit: mm

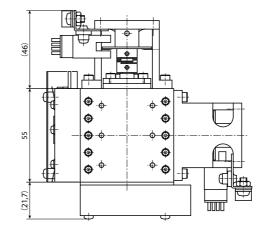
Produktbezeichnung	Abm	essungen des Tis	sches H	Hublänge	E _y	Höhe der Wellenachse H _y	
TS125/220(1)	125			120	71	31,5	
TS220/310	220	310	70	180	110	33,5	
TS260/350	260 350		100	250	120	47,5	

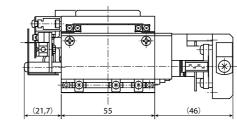

	Produktbezeichnung	Befestigungsschraube					Referenzmasse (2)				
		M (3)	P _x	P _y	d	t	A,	A ₂	В,	B ₂	kg
	TS125/220(1)	6-M5 Tiefe 10	70	75	Für 4-M5	29,6	12,5	100	20	180	11
	TS220/310	6-M6 Tiefe 12	150	100	Für 4-M6	28,5	20	180	50	210	27
	TS260/350	6-M6 Tiefe 12	150	125	Für 4-M8	45,4	22,5	215	50	250	48

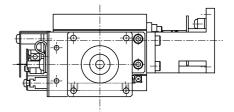

Hinweise (1) Die Oberkante der Motorhalterung ist 1,5 mm höher als die Oberkante des Tisches.


- (2) Masse des Sensors ist nicht inbegriffen.
- (3) Wenn die Befestigungsschraube zu stark angezogen wird, kann die Laufleistung des Führungsschlittens beeinträchtigt werden, weshalb nie eine Schraube eingeführt werden sollte, die länger als die Durchgangsbohrung ist.

CT55/55

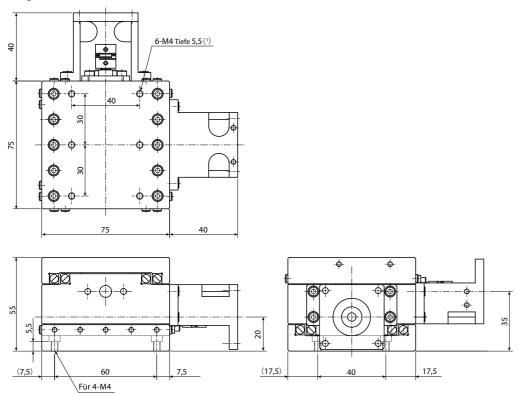

Ausführung ohne Sensor



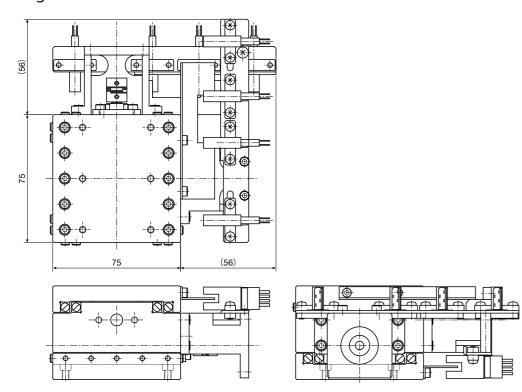


Ausführung mit Sensor

Hublänge X- und Y-Achse: 15 mm Referenzmasse (2): 1,7 kg


Hinweise (1) Wenn die Befestigungsschraube zu stark angezogen wird, kann die Laufleistung des Führungsschlittens beeinträchtigt werden, weshalb nie eine Schraube eingeführt werden sollte, die länger als die Durchgangsbohrung ist.

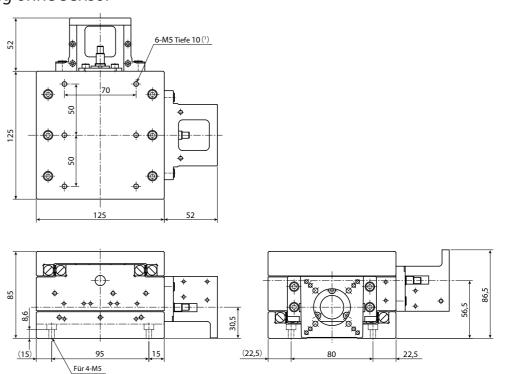
(2) Masse des Sensors ist nicht inbegriffen.


IIC Präzisionspositioniertisch TS / CT

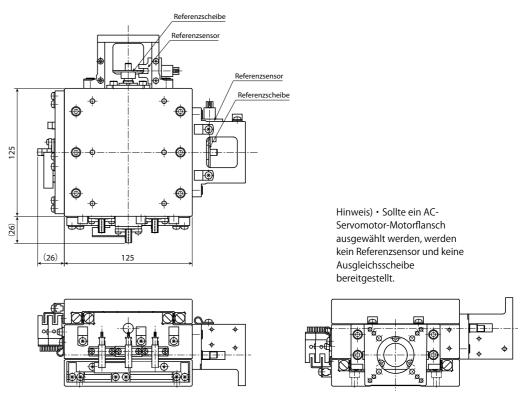
CT75/75

Ausführung ohne Sensor

Ausführung mit Sensor


Hublänge X- und Y-Achse: 25 mm Referenzmasse (2): 2,0 kg

Hinweise (1) Wenn die Befestigungsschraube zu stark angezogen wird, kann die Laufleistung des Führungsschlittens beeinträchtigt werden, weshalb nie eine Schraube eingeführt werden sollte, die länger als die Durchgangsbohrung ist.

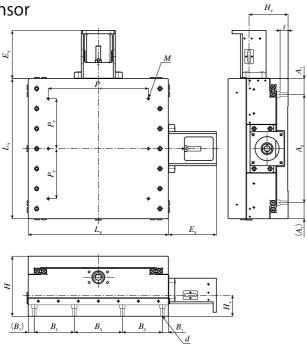

(2) Masse des Sensors ist nicht inbegriffen.

CT125/125

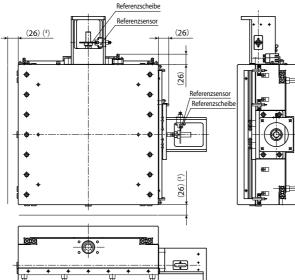
Ausführung ohne Sensor

Ausführung mit Sensor

Hublänge X- und Y-Achse: 50 mm Referenzmasse (²): 1,7 kg


Hinweise (1) Wenn die Befestigungsschraube zu stark angezogen wird, kann die Laufleistung des Führungsschlittens beeinträchtigt werden, weshalb nie eine Schraube eingeführt werden sollte, die länger als die Durchgangsbohrung ist.

(2) Masse des Sensors ist nicht inbegriffen.


IK Präzisionspositioniertisch TS / CT

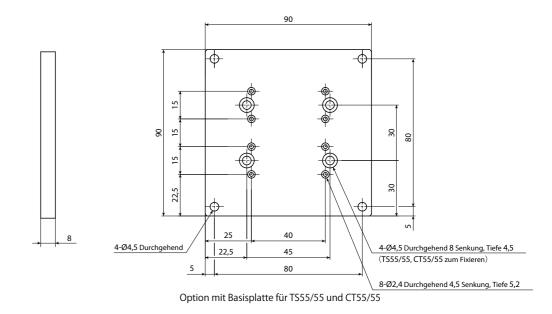
CT220/220, CT260/350, CT350/350

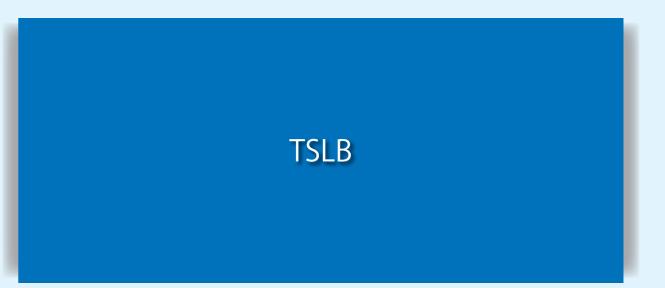
Ausführung ohne Sensor

Ausführung mit Sensor

Hinweis) • Sollte ein AC-Servomotor-Motorflansch ausgewählt werden, werden kein Referenzsensor und keine Ausgleichsscheibe bereitgestellt.

Einheit: mm


5 114 11	Abmessungen des Tisches			Hubl	änge	F	_	Höhe der Wellenachse		
Produktbezeichnung	L _x	L _Y	Н	X-Achse	Y-Achse	L _X	Ε _γ	H _x	H _Y	
CT220/220	220	220	100	120	120	72	72	31,5	68,5	
CT260/350	260	350	150	150	250	100	120	52,5	97,5	
CT350/350	350	350	150	250	250	120	120	52,5	97,5	


0 114 11	Befestigungsschraube			Montageabmessungen Tischbett						Referenzmasse	
Produktbezeichnung	M (1)	P _x	P _Y	d	t	A ₁	A ₂	В,	B ₂	B ₃	(²) kg
CT220/220	6-M6 Tiefe 12	150	75	Für 8-M6	7,5	30	160	15	40	110	20
CT260/350	6-M6 Tiefe 12	150	125	Für 8-M8	20	40	270	15	55	120	66
CT350/350	6-M6 Tiefe 12	250	125	Für 8-M8	20	40	270	15	100	120	77

Hinweise (1) Wenn die Befestigungsschraube zu stark angezogen wird, kann die Laufleistung des Führungsschlittens beeinträchtigt werden, weshalb nie eine Schraube eingeführt werden sollte, die länger als die Durchgangsbohrung ist.

- (2) Masse des Sensors ist nicht inbegriffen.
- (3) Gilt für CT220/220. Dies zeigt die Maße mit angebrachten Sensor.

●Option Abmessungen Basisplatte für TS55/55 und CT55/55

Führungsschlitten

Abdeckblech

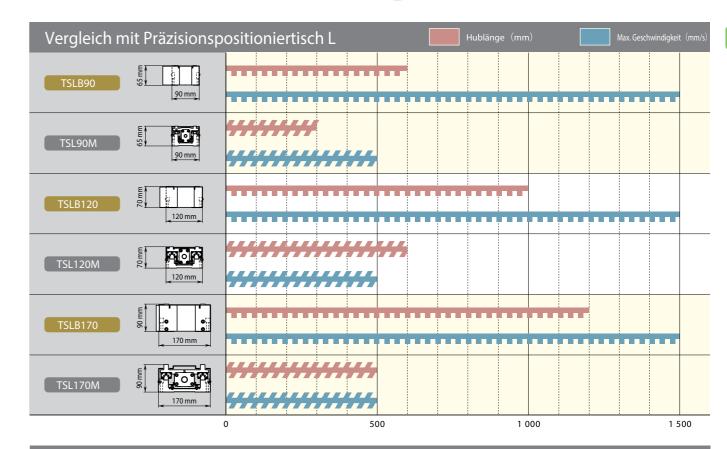
Vorteile

Zahnriemen

Gestell

Kugelumlaufführung

Positioniertisch mit hoher Geschwindigkeit und großem Hub


Positioniertisch mit Hochgeschwindigkeits-Bewegung und langem Hub. Verfügt im Transportmechanismus des Tisches über einen widerstandsfähigen, mit Stahl armierten, Zahnriemen mit hoher Zugspannung.

Leichtes Gewicht und großer Hub

Geringes Gewicht dank Verwendung eines Führungsschlittens und eines Gestells aus hochfester Aluminiumlegierung. Baureihe mit Hublängen von bis zu 1 200 mm ist erhältlich.

Stabile Laufgenauigkeit

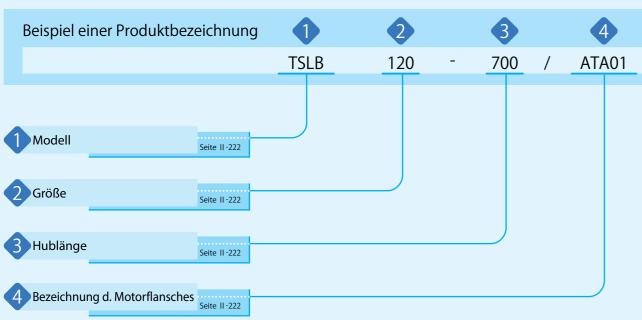
Der Einbau von zwei parallelen Kugelumlaufführungen führt zu einer stabilen und hohen Laufleistung.

Variation

Form	Modell und Größe	Tischbreite	Hublänge (mm)								
FOIIII	Modell und Große	(mm)	300	400	500	600	700	800	900	1 000	1 200
90mm	TSLB 90	90	☆	☆	☆	\$	_	_	ı	_	_
120mm	TSLB120	120	_	_	_	$\stackrel{\wedge}{\simeq}$	☆	$\stackrel{\wedge}{\leadsto}$	$\stackrel{\wedge}{\simeq}$	☆	_
170mm	TSLB170	170	_	_	_	_	_	☆	-	☆	☆

Wichtige Produktbeschreibungen

Antriebsmethode	Hochfester Zahnriemen
Wälzkörper-Linearführung	Kugelumlaufführung
Eingebaute Schmierplatte	nicht eingebaut
Tisch- und Gestellmaterial	Hochfeste Aluminiumlegierung
Sensor	Standardmäßig enthalten


Genauigkeit

Zahnriemen

	Einheit: mn
Wiederholgenauigkeit	±0,070~0,100
Positioniergenauigkeit	-
Leerlauf	-
Parallelität der Tischbewegung A	-
Parallelität der Tischbewegung B	0,050~0,070
Verwindungsgenauigkeit	-
Geradheit	-
Umkehrspiel	-

1N=0,102kgf=0,2248lbs. 1mm=0,03937 Zoll

Produktbezeichnung i

Produktbezeichnung und Ausführung.

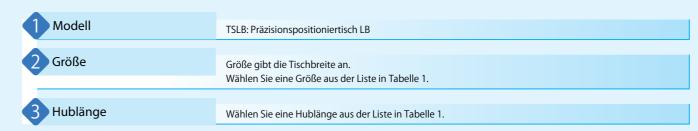


Tabelle 1 Größen, Maße der Tischbreite und Hublängen

	mm

Modell und Größe	Tischbreite	Hublänge
TSLB 90	90	300, 400, 500,600
TSLB120	120	600, 700, 800, 900, 1 000
TSLB170	170	800, 1 000, 1 200

- · Motor sollte durch den Kunden montiert werden.
- Eine in Tabelle 3 dargestellte Kupplung wird vor dem Versand auf dem Tisch montiert. Die endgültige Anpassung sollte jedoch durch den Kunden erfolgen, da sie nur vorübergehend fixiert wird.

Tabelle 2 Anwendung des Motorflansches

	Zu verwendender Motor			Flansch-	Motorflansch	
Art	Hersteller	Baureihe	Modell	größe mm	TSLB 90 TSLB120	TSLB170
			AS66	□60	ATA01	_
	ORIENTAL MOTOR		AS69	□60	ATA01	-
Schritt-			AS98	□85	_	ATA02
motor	Co., Ltd.		AS911	□85	_	ATA02
	RK	RK56 • CRK56 (1)	□60	ATA01	-	
		CRK	RK59	□85	-	ATA02

Hinweis (1) Gilt für den Außendurchmesser Ø8 der Motorwelle.

Anmerkung: Detaillierte Motorspezifikationen finden Sie in dem jeweiligen Katalog des Herstellers.

Tabelle 3 Kupplungsmodelle

Modell und Größe	Kupplungsmodelle	Hersteller	Trägheitsmoment der Kupplung J _c ×10 ⁻⁵ kg • m²
ATA01	MOL-32C- 8×12	Nabeya Bi-tech Kaisha	1,4
ATA02	MOL-40C-12×14	Nabeya Bi-tech Kaisha	4,1

Anmerkung: Detaillierte Angaben zu den Kupplungen finden Sie im jeweiligen Katalog des Herstellers.

Ausführungen .

Tabelle 4 Genauigkeit Einheit: mm

_	<u></u>				
	Modell und Größe	Hublänge	Wiederholgenauigkeit	Parallelität der Tischbewegung B	
		300		0,050	
	TSLB 90	400	±0,070		
		500	±0,070		
		600		0,070	
	TSLB120		±0,100	0,070	
	TSLB170		±0,100	0,070	

Tabelle 5 Maximale Geschwindigkeit und Auflösung

Modell und Größe	Maximale Geschwindigkeit(¹) mm/s	Auflösung (²) mm
TSLB 90		
TSLB120	1 500	0,1
TSLB170		

Hinweise (1) Um die durchführbare maximale Geschwindigkeit zu ermitteln, müssen die Betriebsbedingungen des zu verwendeten Motors und die Lastbedingungen berücksichtigt werden.

(2) Es handelt sich um einen Wert, der gegeben ist, wenn die Teilung des Motors 1 000 Impulse/Umdrehung beträgt.

Tabelle 6 Maximale Belastung

Fini	heit: I	$\kappa \cap$
	ICIL.	14

Modell und Größe	Maximale Belastung
TSLB 90	5
TSLB120	27
TSLB170	29

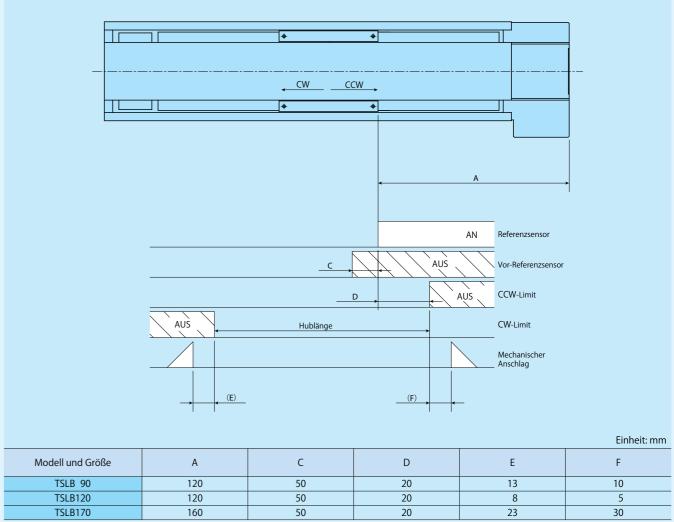
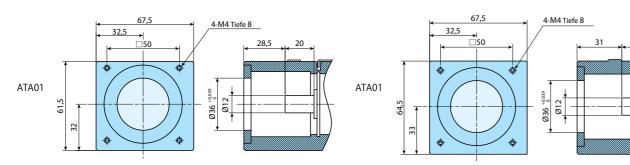
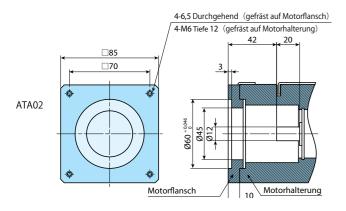

Anmerkung: Gilt in horizontaler Richtung.

Tabelle 7 Trägheits- und Anlaufmoment des Tisches

Modell und Größe	Trägheitsmoment des Tisches J _T ×10 ⁻⁵ kg•m²	Anlaufmoment T _s N•m
TSLB 90	19	0,3
TSLB120	42	0,5
TSLB170	64	0,6

Ausführung mit Sensoren


Table 8 Sensor-Zeittafel

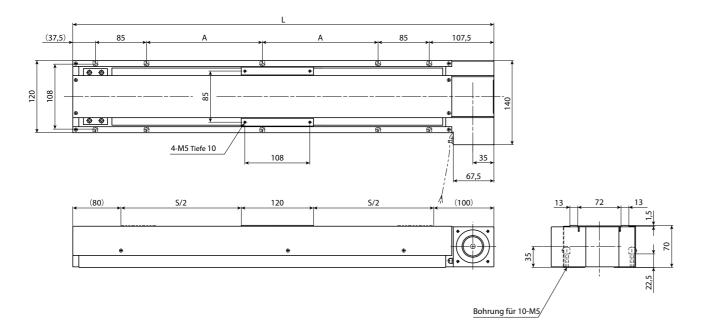

Anmerkung: Die Ausführungen der jeweiligen Sensoren finden Sie im Abschnitt Sensorausführung unter Allgemeine Erläuterung.

Abmessungen des Motorflansches

TSLB90 TSLB120

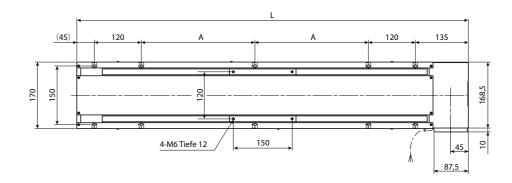


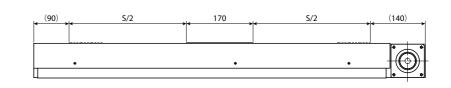
TSLB170

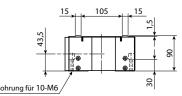

TSLB90

heit:	

Produktbezei	chnung	Hublänge S	Gesamtlänge L	Gewindebohrungen des Tisches A	Masse (Ref.) kg
TSLB90-3	00	300	570	160	7,0
TSLB90-4	.00	400	670	210	7,5
TSLB90-5	00	500	770	260	8,5
TSLB90-6	00	600	870	310	9,5


TSLB120




Einheit: mm

Produktbezeichnung	Hublänge S	Gesamtlänge L	Gewindebohrungen des Tisches A	Masse (Ref.) kg
TSLB120- 600	600	900	292,5	13
TSLB120- 700	700	1 000	342,5	14
TSLB120- 800	800	1 100	392,5	15
TSLB120- 900	900	1 200	442,5	16
TSLB120-1000	1 000	1 300	492,5	17

TSLB170

Einheit: mm

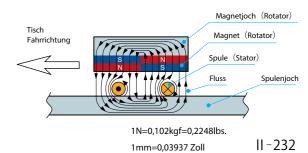
				cirilleit. Illill
Produktbezeichnung	Hublänge S	Gesamtlänge L	Gewindebohrungen des Tisches A	Masse (Ref.) kg
TSLB170- 800	800	1 200	390	27
TSLB170-1000	1 000	1 400	490	31
TSLB170-1200	1 200	1 600	590	34

NT
(NT···V, NT···H, NT···XZ, NT···XZH)

Ultrakompakte, hochmoderne Linearmotortisch-Baureihe NT! Nano Linear NT ist ein extrem flacher Linearmotortisch.

Als Führungssysteme der Nano Table werden Miniatur-Wälzkörperführungen bzw. Kreuzrollenführungen in Kombination mit einem Linearmotor und einem hochauflösendem Linear Encoder verwendet. Dadurch werden hochgenaue Positionierungen erzielt.

Dank der Verwendung eines Neodym-Magneten wird eine hohe Vorschubkraft erzielt, wodurch trotz der kleinen Größe eine hohe Geschwindigkeit und eine schnell ansprechende Positionierung erzielt wird. Außerdem wird eine hohe Sauberkeit ermöglicht, da ein mechanischer Kontakt dank der bahnbrechenden Antriebsmethode ohne sich bewegende Kabel nur bei der Wälzkörper-Linearführungen besteht.


Nano Linear NT

									Stan	dardm NT…V										
Madall und Cräße		NT38	8V10	NT38	3V18	1	NT55V2	5	N	NT55V6	5	N	80V2	5	1	NT80V6	55	N7	Γ80V120	0
Modell und Größe				1		*	9		V			₩			¥		3	4		1
Querschnitt			38	55 55 1 5 1 5 1 5			80 °													
Max. Vorschubkraft	N	3	;	3	3		25		25		36			36		36				
Nennvorschubkraft	N	(0,6	(0,8		7			7			8			8			8	
Maximale Nutzlast	kg	(0,5	(0,5		5			5			5			5			5	
Tatsächliche Hublänge	mm	10)	18	3		25			65			25			65		1	120	
Auflösung	μm	0,1	0,5	0,1	0,5	(0,1	0,5	(),1	0,5	0	1	0,5	(),1	0,5	C),1	0,5
Max. Geschwindigkeit	mm/s	270	500	270	500	270	1000	1300	270	1000	1300	270	1000	1300	270	1000	1300	270	1000	1300
Wiederholgenauigkeit	μm	±0	,5	±0	±0,5		±0,5		±0,5		±0,5		±0,5		±0,5					

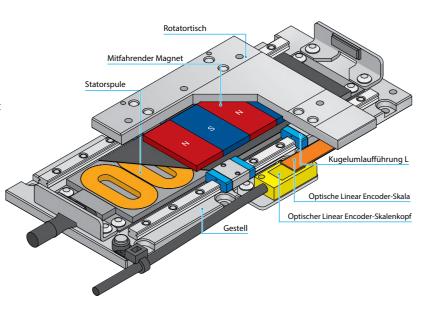
		ı	Hochgena NT	ues Model ···H	I		Pick and Place-Einheit NTXZ					Pick and Place-Einheit mit hoher Vorschubkraft NT···XZH				
		NT88I	H25	NT88H65			NT80XZ4510				NT90XZH2510					
Modell und Größe																
Querschnitt			88			210			(268) 260 260 67			29.5 →	160			
							X-Achs	e		Z-Achse X-Achse		<u>:</u>	Z-Achse			
Max. Vorschubkraft	N	2	.5	1	25		50		25				70		70	
Nennvorschubkraft	N		5 5			10			2.5		l	elbstkühlu Luftkühlu		l	tkühlung: ftkühlung:	
Maximale Nutzlast	kg		5		5		-			0,1			-			0,2
Tatsächliche Hublänge	mm	2	!5	6	55		45			10			25			10
Auflösung	μ m	0,01	0,05	0,01	0,05	(),1	0,5	0,	.1	0,5	0	,1	0,5	0,1	0,5
Max. Geschwindigkeit	mm/s	90	400	90	400	270	1000	1300	270	800	800	270	1000	1300	270	000 100
Wiederholgenauigkeit	μm	±0	,1	±(),1		±0,5		±0,5		±0,5		±0,5			

Funktionsprinzip des Nano Linear NT

Der Nano Linear NT verfügt innerhalb des kompakten Gehäuses über einen Magneten, eine optische Linear Encoder-Skala als Rotator, eine Luftspule und eine optische Linear Encoder-Skala als Stator. Wie rechts dargestellt, ist die Spule aufgrund des Magnetflusses, der durch den Magneten und das Spulenjoch immer in vertikaler Richtung wirkt, einer horizontalen Kraft sowie einem Rotationsfluss, der um die Spule durch den Spulenstrom erzeugt wird, ausgesetzt (Flemings Linke-Hand-Regel). Durch das Umschalten des Spulenstroms in eine bestimmte, der Flussrichtung entsprechenden Richtung, kann eine kontinuierliche Vorschubkraft in eine bestimmte Richtung erzielt werden und Linearbewegungen des Rotators bleiben erhalten. Fahren und genaues Positionieren erfolgen durch $eine\ Beschleunigungsregulierung\ mittels\ Strommenge\ und\ Feedback\ des\ Linear\ Encoders\ .$

- 11	-23	1

II-232


Antriebsmethode	Linearmotor
Linear-Wälzkörperführung	Kugelumlaufführung Kreuzrollenführung
Eingebaute Schmierplatte	Eingebaute "C-Lube"-Schmierplatte (außer für NT38V, NT55V und NT···H)
Tisch- und Gestellmaterial	Kohlenstoffstahl

Standardmäßig mitgeliefert

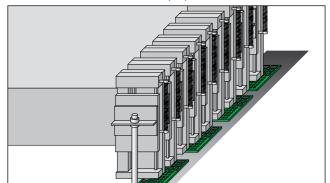
Wiederholgenauigkeit ±0,0001~0,0005 Positioniergenauigkeit Leerlauf Parallelität der Tischbewegung A Parallelität der Tischbewegung B Genauigkeit der Attitüde Geradheit Umkehrspiel

[Standardmodell]

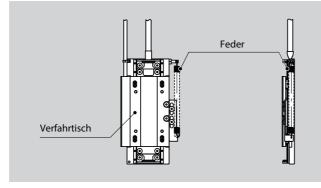
NT···V ist ein Linearmotortisch mit herausragendem Preis-Leistungs-Verhältnis, der eine Kugelumlaufführung Lals Miniatur-Wälzkörper-Linearführung in der Tischführung verwendet, dessen Anzahl an Teilen reduziert und bei dem die Form der Teile überarbeitet wurde. NT38V10, der kleinste Tisch der Baureihe, verfügt über eine Querschnittshöhe von nur 11 mm, eine Tischbreite von nur 38 mm und eine Gesamtlänge von 62 mm. Dies trägt zur weiteren Verkleinerung des Positioniermechanismus bei. Ein mit dem Motion-Netwerk EtherCAT kompatibler Treiber und ein mit SSCNET III/H kompatibler Treiber sind ebenfalls verfügbar. Eine verbesserte Verkabelung ermöglicht reibungslosere, schnellere und genauere Bewegungen.

Vorteile

Ultrakompakt


Wir haben uns um eine weitere Verkleinerung bemüht. Insbesondere NT38V10, der kleinste Tisch der Baureihe, verfügt über eine Querschnittshöhe von nur 11 mm, eine Tischbreite von nur 38 mm und eine Gesamtlänge von 62 mm. Der belegte Raum wird selbst bei der geschichteten Verwendung von mehreren Tischen nicht erhöht, wodurch die weitere Verkleinerung des Positioniermechanismus gefördert wird.

Modell und Größe	NT38V10	NT38V18	NT55V25	NT55V65	NT80V25	NT80V65	NT80V120
Querschnitt (mm)	3	= = 1 B	55	4		80	9 1

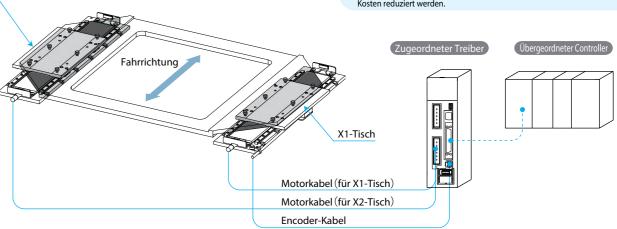

Kompatibel mit vertikaler Montage

Das Herabfallen des Verfahrtisches bei Stromausfällen wird durch die Integration von individuellen Federsystem-Ausgleichmechanismen verhindert. Dank des flachen Profils und der kompakten Eigenschaften von NT···V, können mehrfache Pick and Place-Mechanismen erstellt werden.

Mehrfacher Pick and Place-Mechanismus (Bild)

Federsystem-Ausgleichmechanismus

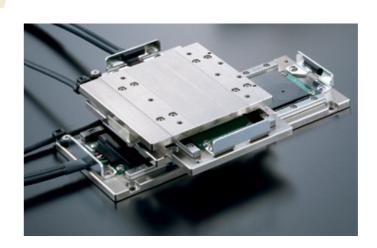
Anmerkung: Vertikale Montage wird je nach Anwendungszweck gefertigt. Da die Feder gemäß Ihren Anforderungen gewählt wird, kontaktieren Sie bitte IKO

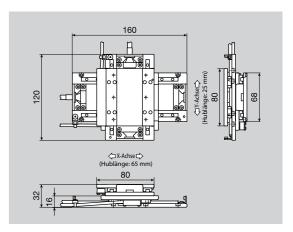

Parallelbetrieb von zwei Achsen

X2-Tisch

Die steife Verbindung von zwei parallel angeordneten NT···V Einheiten mit einem einzelnem spezifischen Treiber ermöglicht eine hohe Vorschubkraft und eine stabile Genauigkeit der

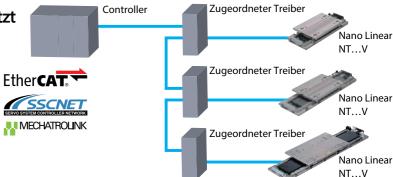
Eigenschaften des Parallelbetriebs von zwei Achsen


- Durch den Antrieb mit zwei Achsen kann eine hohe Vorschubkraft erzielt
- Der Antrieb des rechten und linken Tisches kann Tischverzögerung und Temperaturverspannungen reduzieren.
- Minimierte Tischverzögerung und Temperaturverspannung garantieren hohe
- Im Vergleich zum Zwei-Achsen-Synchronisationssteuerungssystem können Kosten reduziert werden



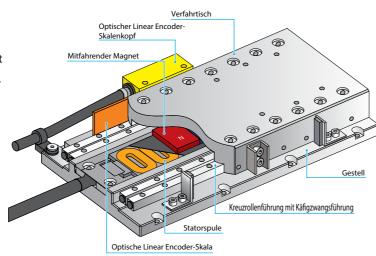
Anmerkung: Sollten Sie den Parallelbetrieb von zwei Achsen benötigen, kontaktien Sie bitte IKO.

Ausführung XY-Zwei-Achsen-Kombination


Zwei Einheiten von NT80V können ohne besondere Befestigung kombiniert verwendet werden und ein XY-Tisch mit flachen Profil kann einfach hergestellt werden.

Motion-Netzwerk wird unterstützt

Treiber, die mit dem Motion-Netzwerk EtherCAT, SSCNET III/H und MECHATROLINK kompatibel sind, sind ebenfalls verfügbar. Dadurch kann ein fortschrittliches System mit optimierter Verdrahtung konfiguriert werden.



Anmerkung: EtherCAT[®] ist eine eingetragene Handelsmarke und patentierte Technologie, lizenziert von BeckhoffAutomation GmbH, Deutschland. SSCNET || | / H ist ein Motion-Netzwerkkommunikationssystem für Servo-Systemsteuerung, das von Mitsubishi Electric Corporation entwickelt wurde. MECHATROLINK ist ein Open-Field-Netzwerk, das von der MECHATROLINK Members Association gesteuert wird.

$NT\cdots H$

[Hochgenaues Modell]

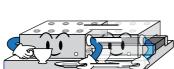
NT···H ist ein hochgenauer Linearmotor-Tisch mit hoher Steifigkeit und gleichmäßigen Bewegungen ohne Pulsieren und ist hinsichtlich Positioniergenauigkeit und Laufparallelität unter 1 μ m mit einem statischen Luftdrucklager vergleichbar. Es greift für die Tischführung auf eine Kreuzrollenführung mit Käfigzwangsführung zurück.

Vorteile

Hohe Verwindungsgenauigkeit

Durch die Kombination von mit hoher Genauigkeit verarbeiteten Teilen und einer Kreuzrollenführung mit Käfigzwangsführung wird eine Verwindungsgenauigkeit von 5 sek oder weniger erzielt. Abweichung der Verwindung aufgrund von Bewegungen werden reduziert, wodurch eine hohe

Wiederholgenauigkeit ermöglicht wird.

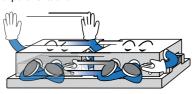


Position mm

Hohe Geschwindigkeitstabilität

Verbesserte Geschwindigkeitsstabilität dank gleichmäßiger Bewegung der Kreuzrollenführung, eisenlosem mitfahrendem

Magneten und Hochleistungs-Servotreiber.



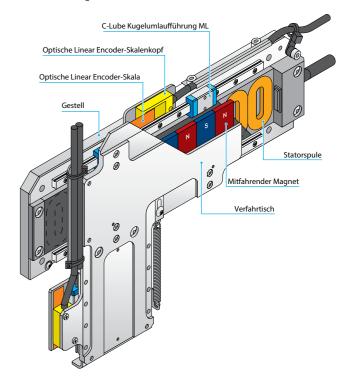
10mm/s Geschwindigkeitsstabilität(gem 10.4 Zeit s

Hohe Laufgenauigkeit

Hohe Laufgenauigkeit mit einer Laufparallelität von weniger als 1μ m dank

präziser Fertigung und Montage der Komponenten.

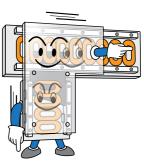
Laufparallelität: ≤ 1 µ n


30

40

$NT\cdots XZ$

[Pick and Place-Einheit]

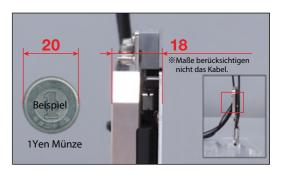

NT···XZ ist eine Pick and Place-Einheit mit Linearmotor und ultra-dünnem Profil mit einer Dicke von nur 18 mm. Dies wird durch die Integration eines X-Achsen-Verfahrtisch und einem Z-Achsen-Gestell unter Verwendung einer C-Lube Kugelumlaufführung als Miniatur-Wälzkörper-Linearführung in der Tischführung erzielt. Durch Eingabe eines Positionierungsprogramms können Sie flexible Betriebsabläufe einstellen und die Hübe je nach durchzuführender Arbeit einfach einstellen.

Vorteile

Positionierung mit hoher Taktung

Pick and Place-Einheit mit noch nie dagewesener Struktur mit Linearmotorantrieb. Optische Linear Encoder sind auf beiden Achsen angebracht, um eine genaue Positionierung mit hoher Taktung zu erzielen.

Ultradünn und platzsparend


Ultradünnes Profil mit einer Breite von nur 18 mm wird dank der Integration des

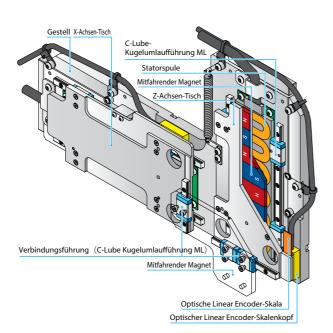
X-Achsen-Verfahrtisches und des

Z-Achsen-Gestells erzielt. Parallele Installation von vier Einheiten innerhalb einer Breite von nur 100 mm ist möglich. Durch eine solche

Platzeinspärung kann die Effizienz erhöht werden.

Betriebsüberwachungsfunktion

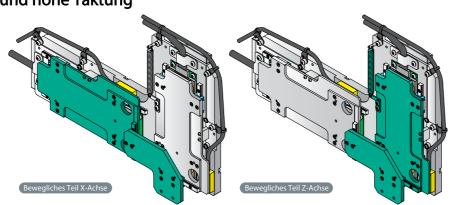
Der Betrieb kann von einem PC aus mithilfe der Treiberüberwachungsfunktion verifiziert werden

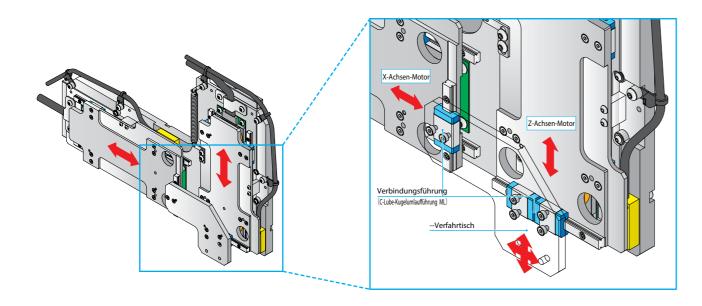


1N=0,102kgf=0,2248lbs. 1mm=0,03937 Zoll

$NT \cdots XZH$

[Pick and Place-Einheit mit hoher Vorschubkraft]


Bei NT···XZH handelt es sich um eine Pick and Place-Einheit mit hoher Vorschubkraft und Linearmotorantrieb sowie kompakten vollständigen X- und Z-Achsen. Dabei wird auf eine C-Lube-Kugelumlaufführung als Linear-Wälzkörperführung in den Führungselementen des Tisches zurückgegriffen. Dank der Verwendung eines Antriebssystems des Verfahrtisches mit einem Verbindungsmechanismus erzielt sie sowohl eine höhere Vorschubkraft als auch eine Reduzierung des Gewichts der beweglichen Teile und der Taktzeit. Durch Eingabe eines Positionierprogramms können Sie flexible Betriebsabläufe einstellen und die Hübe je nach erforderlichen Arbeiten einfach regeln.



Vorteile

Hohe Vorschubkraft und hohe Taktung

Dank des X- und Z-Achsen-Motors auf der flachen Oberfläche und der Verwendung eines Systems zum Antrieb des Verfahrtisches durch einen Verbindungsmechanismus erzielt es sowohl eine höhere Vorschubkraft des Linearmotors als auch eine Reduzierung des Gewichts der beweglichen Teile und der Taktzeit.

● Hohe Auflösung und hohe Reaktivität

Durch den geschlossenen Regelkreis, der dank der Verwendung eines optischen Linear Encoders in beiden Achsen erzielt wird, wird sowohl eine hohe Auflösung und Reaktivität ermöglicht.

Messbedingungen

NT90XZH2510/5

Tatsächliche Vorschubkraft

: X-Achse; 14,8 N, Z-Achse; 15,7 N

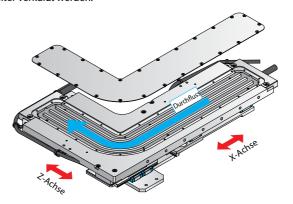
Nutzlast

: X-Achse; 22 mm, Z-Achse; 5 mm Beschl.-/ Verzögerungszeit : X-Achse; 24 ms, Z-Achse; 9 ms

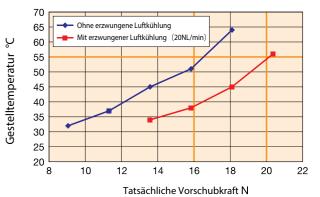
Ermöglicht Hochgeschwindigkeits-

positionierung!

Tatsächliche Geschw. der X-Achse Positionierung vollständiges Signal für X-Ach
Tatsächliche Geschw. der Z-Achse


Positionierung vollständiges Signal für Z-Achse

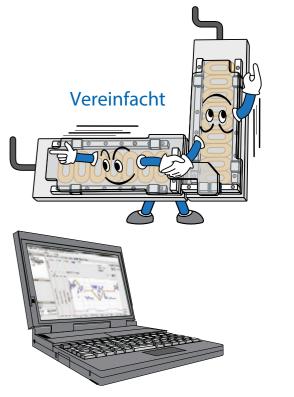
Ausregelzeit: 2 ms, Anzahl d. Zyklen: 334 mal/min 1500 1000 500 -1000 -1500 100 150 250 Zeit ms


Luftkühlung

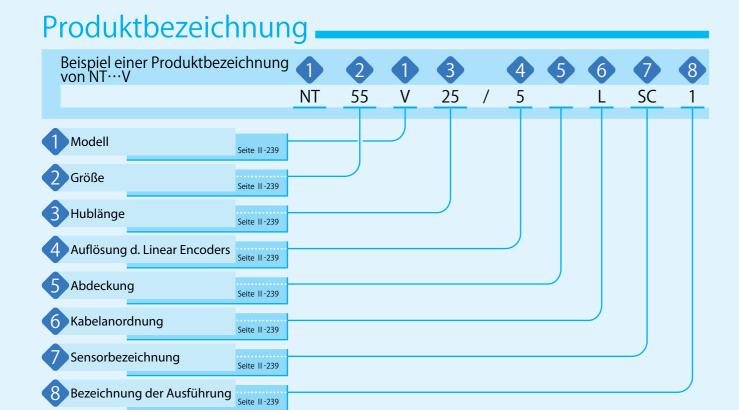
Mit einer Struktur, bei der die hitzeerzeugenden Spulen beim Stator zusammenlaufen, sind Kühlung und Wärmeabfuhr des Montagestells einfach.

Wenn die Option Luftkühlung augewählt werden, kann die Taktzeit weiter verkürzt werden.

NT90XZH Temperatur (Umgebungstemperatur: 20°C)



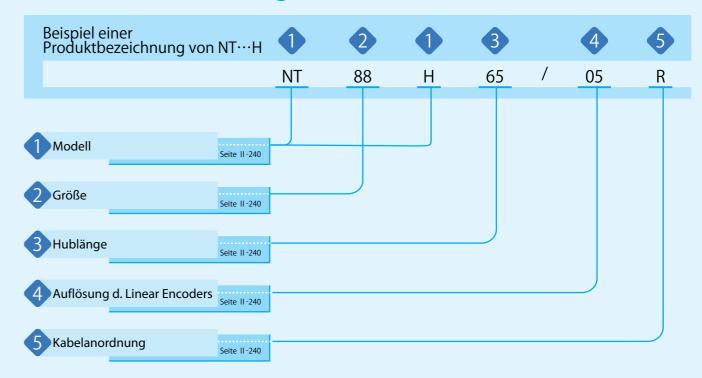
Kabellose bewegliche Teile


Obwohl es sich um eine Einheit mit mehreren Achsen handelt, ist die Verkabelung einfacher und durch das Verwenden eines kabellosen mitfahrenden Magnet-Systems wird eine eine höhere Sauberkeit erzielt.

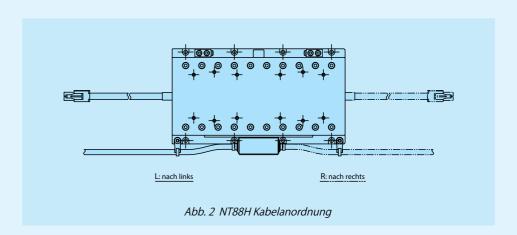
Betriebsüberwachungsfunktion

Wie bei NT···XZ, kann die Spur mithilfe eines PCs dank der Treiberüberwachungsfunktion überprüft werden.

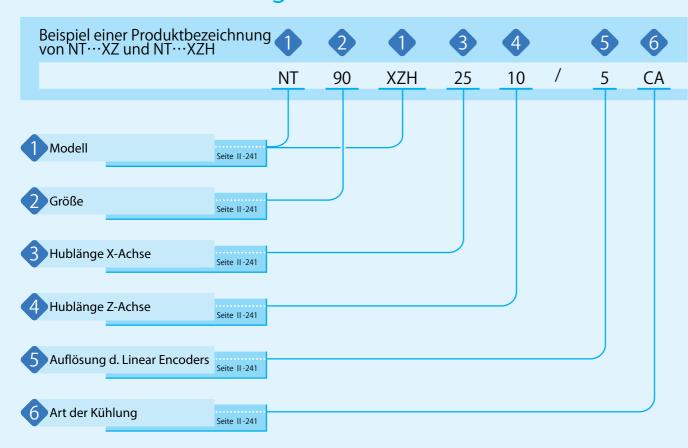
1N=0,102kgf=0,2248lbs. 1mm=0,03937 Zoll



Produktbezeichnung und Ausführung -


Abb. 1 NT···V Kabelanordnung

Produktbezeichnung



Produktbezeichnung und Ausführung

Produktbezeichnung.

Produktbezeichnung und Ausführung -

Modell	NT···XZ : Nano Linear NT···XZ NT···XZH : Nano Linear NT···XZH, Ausführung mit hoher Vorschubkraft						
	·						
2 Größe	80: Breite Z-Achse 80 mm (gilt für NT···XZ) 90: Breite Z-Achse 90 mm (gilt für NT···XZH)						
3 Hublänge X-Achse	25: 25 mm (gilt für NT···XZH) 45: 45 mm (gilt für NT···XZ)						
4 Hublänge Z-Achse	10: 10 mm						
5 Auflösung d. Linear Encoders	1 : 0.1μm						
	1 F: 0,1 μm Hochgeschwindigkeitsausführung 5 : 0.5 μm						
6 Art der Kühlung	Kein Symbol: Luftselbstkühlung CA : Luftkühlung (gilt für NT···XZH)						

Ausführungen .

Tabelle 1 Ausführung/Leistung von NT38V

Modell u	und Größe	NT38	3V10	NT38V18			
Maximale Schubkraft (1)	N			3			
Nennschubkraft (2)	N	0,	6	8,0			
Maximale Nutzlast	kg	0,5					
Tatsächliche Hublänge	mm	1	0	18			
Auflösung	μm	0,1	0,5	0,1	0,5		
Maximale Geschwindigkeit mm/s	mm/s	270	500	270	500		
Wiederholgenauigkeit (3)	μm		±	0,5			
Masse des Verfahrtischs	kg	0,036 (mit Abo	deckung 0,040)	0,048 (mit Abo	deckung 0,052)		
Gesamtmasse (4)	kg	0,190 (mit Abo	deckung 0,198)	0,230 (mit Abdeckung 0,239)			
Umgebungstemperatur und Feuchtigkeit in Betrieb		0~40 ℃ • 20~80 % RH (kondensfrei halten)					

- Hinweise (1) Die Dauer der maximalen Vorschubkraft beträgt bis zu 1 Sekunde.
 - (2) Dies basiert auf dem Fall der Montage an einem Gegenstück aus Metall bei einer Umgebungstemperatur von 20 ° C.
 - (3) Wenn die Temperatur des Produkts konstant ist.
 - (4) Masse des Kabels nicht inbegriffen.

Tabelle 2 Ausführung/Leistung von NT55V

Modell u	ınd Größe		NITE	5V25	NT55V65			
Artikel			INIO:	3723	NIOOVOO			
Maximale Schubkraft (1)	N			2	25			
Nennschubkraft (²)	N		7					
Maximale Nutzlast	kg	5						
Tatsächliche Hublänge	mm	25			65			
Auflösung	μm	0	,1	0,5	0,1		0,5	
Maximale Geschwindigkeit mm/s	mm/s	270	1 000 (5)	1 300	270	1 000 (5)	1 300	
Wiederholgenauigkeit (3)	μm			±	0,5			
Masse des Verfahrtischs	kg		0,	17		0,17		
Gesamtmasse (4)	kg	0,42			0,5			
Umgebungstemperatur und Feuchtigkeit in Betrieb		0~40 °C • 20~80 % RH (kondensfrei halten)						

- Hinweise (1) Die Dauer der maximalen Vorschubkraft beträgt bis zu 1 Sekunde.
 - (²) Dies basiert auf dem Fall der Montage an einem Gegenstück aus Metall bei einer Umgebungstemperatur von 20 °C.
 - (3) Wenn die Temperatur des Produkts konstant ist.
 - (4) Masse des Kabels nicht inbegriffen.
 - (5) Gilt für Hochgeschwindigkeitsausführung.

Taballa 2 Austibrung/Laistung van NTOON

Tabelle 3 Austunrung/ Leistung von N180V										
	l und Größe	nd Größe NT80V25			NT80V65			NT80V120		
Artikel										
Maximale Vorschubkraft (1)	N					3	6			
Nennschubkraft (2)	N		8							
Maximale Nutzlast	kg	5								
Tatsächliche Hublänge	mm	25			65			120		
Auflösung	μm	0	,1	0,5	0,1 0,5		0,1		0,5	
Maximale Geschwindigkeit	mm/s	270	1 000 (5)	1 300	270	1 000 (5)	1 300	270	1 000 (5)	1 300
mm/s	11111/3	270	1 000(*)	1 300	270	1 000(*)	1 300	270	1 000(*)	1 300
Wiederholgenauigkeit (3)	μm				±0,5					
Masse des Verfahrtischs	kg		0,	28	0,28			0,47		
Gesamtmasse (4)	kg	0,68			0,83			1,4		
Umgebungstemperatur und			0-40°C 20-900/ DII (kandanafusi baltan)							
Feuchtigkeit in Betrieb			0~40 °C • 20~80 % RH (kondensfrei halten)							

- Hinweise (1) Die Dauer der maximalen Vorschubkraft beträgt bis zu 1 Sekunde.
 - $(^2)$ Dies basiert auf dem Fall der Montage an einem Gegenstück aus Metall bei einer Umgebungstemperatur von 20 $^\circ$ C.
 - (3) Wenn die Temperatur des Produkts konstant ist.
 - (4) Masse des Kabels nicht inbegriffen.
 - (5) Gilt für Hochgeschwindigkeitsausführung.

Tabelle 4 Ausführung/Leistung von NT···H

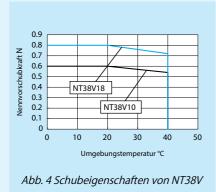
Modell u	nd Größe	NT88	3H25	NT88	IT88H65	
Maximale Vorschubkraft (1)	N		2	5		
Nennvorschubkraft (²)	N			5		
Maximale Nutzlast	kg			5		
Tatsächliche Hublänge	mm	25		65		
Auflösung	μ m	0,01	0,05	0,01	0,05	
Maximale Geschwindigkeit mm/s	mm/s	90	400	90	400	
Positioniergenauigkeit (3)	μ m			1		
Wiederholgenauigkeit (4)	μ m		±	0,1		
Parallelität der Tischbewegung A	μm		!	5		
Verwindungsgenauigkeit (5)	Sek.		!	5		
Geradheit vertikal und horizontal	μm			1		
Masse des Verfahrtischs	kg	0,	,7	0,9		
Gesamtmasse (6)	kg	1,	,6	2		
Umgebungstemperatur und Feuchtigkeit in Betrieb		0~40 °C · 20~80 % RH (kondensfrei halten)				

Hinweise (1) Die Dauer der maximalen Vorschubkraft beträgt bis zu 1 Sekunde.

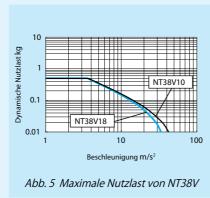
- (2) Dies basiert auf dem Fall der Montage an einem Gegenstück aus Metall bei einer
- Umgebungstemperatur von 20 ° C.
- (3) Der Wert gilt, wenn die Umgebungs- und Produkttemperatur 20 Grad beträgt.
- (4) Wenn die Temperatur des Produkts konstant ist.
- (5) Dies stellt die Genauigkeit beim Nicken und Gieren dar.
- (6) Masse des Kabels nicht inbegriffen.

Tabelle 5 Ausführung / Leistung von NT···XZ und NT···XZH

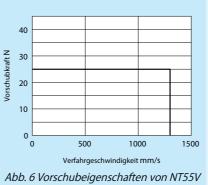
Model	l und Größe	NT80X			〈Z4510			NT90XZH2510					
Artikel			X-Achse		Z-Achse		X-Achse			Z-Achse			
Maximale Vorschubkraft (1)	N		50		25		70						
Nennvorschubkraft (²)	N		10			2,5		Luftselbstkühlur		nlung: 16	ıng: 16 Luftkühlung (³): 20		20
Maximale Nutzlast	kg	0,),1			0,2					
Tatsächliche Hublänge	mm		45		10		25			10			
Auflösung	μm		0,1	0,5		0,1	0,5	0,1 0,5		0,5	0,1		0,5
Maximale Geschwindigkeit mm/s	s mm/s	270	1 000 (7)	1 300	270	800 (7)	800	270	1 000 (7)	1 300	270	1 000 (7)	1 000
Wiederholgenauigkeit (4)	μm			±	0,5			±0,5					
Masse des Verfahrtischs	kg	0,6 (5)			0,12		0,38			0,35			
Gesamtmasse (6)	kg	1,6				2,8							
Umgebungstemperatur und Feuchtigkeit in Betrieb		0~40 °C · 20~80 % RH (kondensfrei halten)											


Hinweise (1) Die Dauer der maximalen Vorschubkraft beträgt bis zu 1 Sekunde.

- (2) Dies basiert auf dem Fall der Montage an einem Gegenstück aus Metall bei einer Umgebungstemperatur von 20 ° C.
- (3) Bei einem Luftstrom von 20 NL/min.
- (4) Wenn die Temperatur des Produkts konstant ist.
- (6) Masse des Kabels nicht inbegriffen.
- (7) Gilt für Hochgeschwindigkeitsausführung.

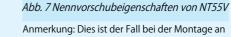

■ Schubeigenschaften von NT···V

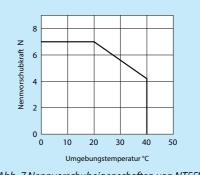
NT38V


Anmerkung: Dies ist der Fall bei der Montage an einem Gegenstück aus Metall.

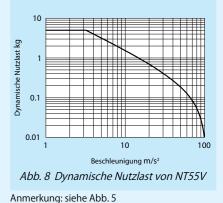
Anmerkung: Dies ist ein Wert, der auf Basis der Vorschubkraft eines Tisches mit einer auf 500 mm/s eingestellten Verfahrgeschwindigkeit berechnet wurde.

NT55V


• Mit Treiber ADVA-01NL oder MR-J4 verwenden



Mit Treiber ADVA-R5ML verwenden


NT55V25

500

Anmerkung: Dies ist der Fall bei der Montage an einem Gegenstück aus Metall.

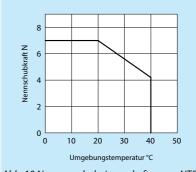
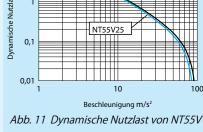



Abb. 10 Nennvorschubeigenschaften von NT55V Anmerkung: Dies ist der Fall bei der Montage an

einem Gegenstück aus Metall.

Anmerkung: siehe Abb. 5

NT80V

Mit Treiber ADVA-01NL oder MR-J4 verwenden

Verfahrgeschwindikeit mm/s

Abb. 9 Vorschubeigenschaften von NT55V

NT55V65

1000

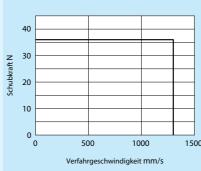
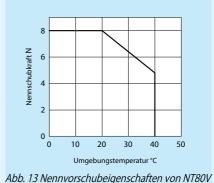



Abb. 12 Vorschubeigenschaften von NT80V

Anmerkung: Dies ist der Fall bei der Montage an

einem Gegenstück aus Metall.

Beschleunigung m/s2 Abb. 14 Dynamische Nutzlast von NT80V

Anmerkung: siehe Abb. 5

• Mit Treiber ADVA-R5ML verwenden

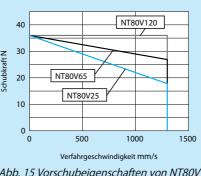
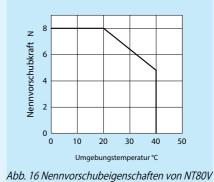
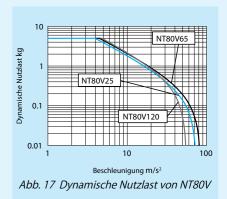
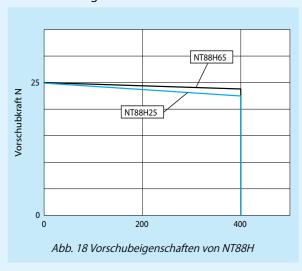




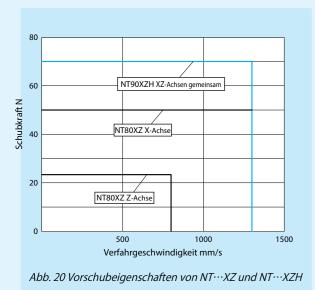
Abb. 15 Vorschubeigenschaften von NT80V

Anmerkung: Dies ist der Fall bei der Montage an einem Gegenstück aus Metall.

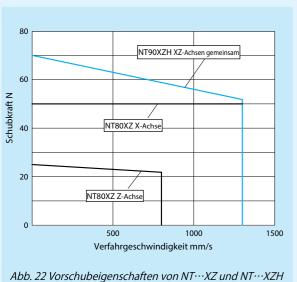

Anmerkung: siehe Abb. 5

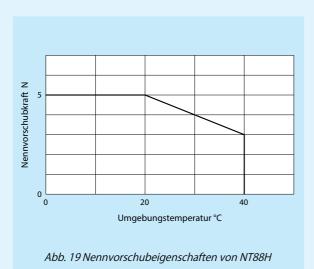
1N=0,102kgf=0,2248lbs. 1mm=0,03937 Zoll

11-244


_

■ Vorschubeigenschaften von NT···H




■ Schubeigenschaften von NT···XZ und NT···XZH

● Mit Treiber ADVA-01NL verwenden

● Mit Treiber ADVA-R5ML verwenden

Anmerkung: Dies ist der Fall bei der Montage an einem Gegenstück

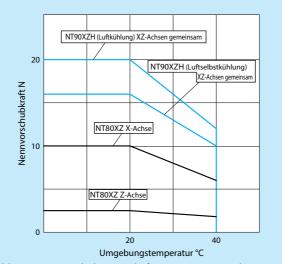


Abb. 21 Nennvorschubeigenschaften von NT···XZ und NT···XZH

Anmerkung: Dies ist der Fall bei der Montage an einem Gegenstück aus Metall.

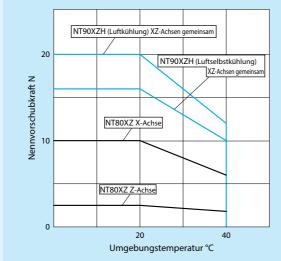
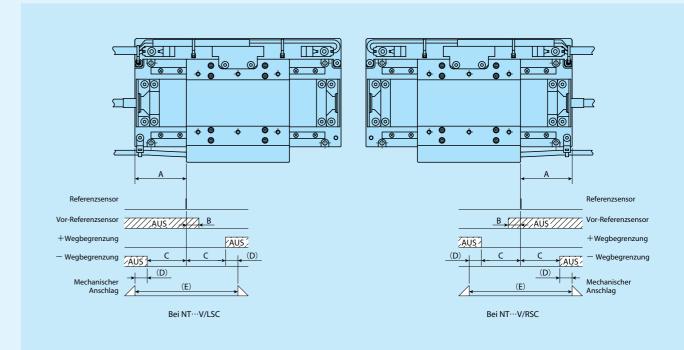



Abb. 23 Nennvorschubeigenschaften von NT···XZ und NT···XZH

Anmerkung: Dies ist der Fall bei der Montage an einem Gegenstück aus Metall.

Ausführung mit Sensoren

Tabelle 6 Sensor-Zeittafel für NT55V/SC und NT80V/SC

					Einheit: mm
Modell und Größe	A	B (1)	C(1)	D(1)	E(1)
NT55V 25/SC	20	4	12,5	3	31
NT55V 65/SC	40	4	32,5	3	71
NT80V 25/SC	20	4	12,5	3	31
NT80V 65/SC	40	4	32,5	3	71
NT80V120/SC	70	4	60	5,5	131

Hinweis (1) Die jeweiligen Werte sind Referenzen und keine garantierten Werte.

Für detaillierte Abmessungen, kontaktieren Sie bitte **IKO**.

Anmerkung: Die Ausführungen der jeweiligen Sensoren finden Sie im Abschnitt Sensorausführung unter Allgemeine Erläuterung.

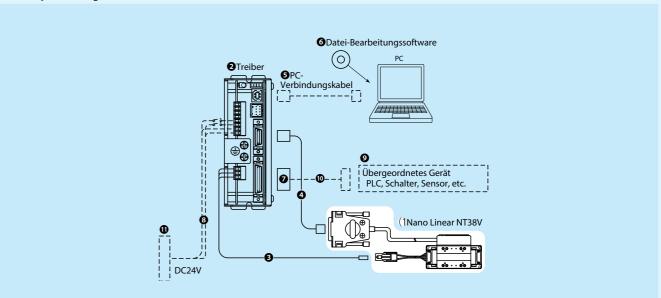
● NT···V, NT···XZ und NT···XZH besitzen keinen eingebauten Sensor

Die "Return to Origin"-Funktion wird bei einer Systemkonfiguration unter Verwendung des ADVA-Treibers sowie bei Verwendung des Linearmotors NT38V über eine externe Eingabe ausgeführt. Hierbei fährt der Tisch nach Erreichen des mechanischen Anschlages zurück und bleibt schließlich in der Ursprungsposition stehen. Da auf dem NT55V und NT80V jedoch ein Grenzsensor und ein Vor-Referenzsensor mit einem Zusatzsignal (/SC) montiert werden können, ist der "Return to Origin"-Funktion mit jedem Sensor auch möglich

Die Vorwärts- / Rückwärtsrichtung-Grenzerkennung in einer Systemkonfiguration unter Verwendung des Treibers ADVA wird durch die Software-Grenzfunktion des Treibers durchgeführt. Der Hubbereich kann durch die Parameter für den Treiber eingestellt werden. Außerdem ist die Limit-Funktion der Software nur im Modus Positionskontrolle aktiviert und das "Return-to-Origin" muss abgeschlossen sein. Montieren Sie für den Drehzahlsteuermodus und Vorschubkraftsteuermodus einen zusätzlichen Sensor.

\supset 14 AUS AUS 14 14 AUS Bei NT88H25/L Bei NT88H25/R 0 \odot \mid \odot 0 0 ° © 。 ◎ 0 0 0 0 0 0 0 0 0 0 34 AUS +Weabearenzung +Weabearenzung AÚS Anschlag Bei NT88H65/L Bei NT88H65/R Table 24 Sensor-Zeittafel für NT···H

Anmerkungen


- 1. Verwenden Sie die "Return to Origin"-Funktion (Limit-Inversions-Methode) des Treibers, um einen "Return-to-Origin"-Vorgang in der Standard-Systemkonfiguration auszuführen. Es ist notwendig, die Grenzsignalausgabe aus der Encoder-Schnittstelle in den Treiber einzugeben.
- 2. Vor-Referenzsensor wird nicht mitgeliefert.
- 3. Die Ausführungen der jeweiligen Sensoren finden Sie im Abschnitt Sensorausführung unter Allgemeine Erläuterung.

Systemkonfiguration •

■ Systemkonfiguration für NT38V

Für Nano Linear NT38V gibt es optimierte Treiber und die Systemkonfiguration wird in Tabelle 7 dargestellt. Eine detaillierte Treiberausführung finden Sie im Abschnitt Treiberausführung auf der Seite II -345. Geben Sie bei der Bestellung bitte die gewünschten Produktbezeichnungen aus der Liste aus Tabelle 7 an.

Tabelle 7 Systemkonfiguration für NT38V

Nr.	Name	Produktbezeichnung
0	Nano Linear NT···V	NT38V
0	Treiber	NCR-DCE0D3B-021D-S135
€	Motorverlängerungskabel (3 m) ⁽ 1)	TAE20T8-AM03
•	Verlängerungskabel für Encoder (1,5m(¹))	TAE20U8-EC
6	PC-Verbindungskabel	Muss durch den Kunden bereitgestellt werden. USB-Kabel A Stecker - Mini B-Stecker
6	Dateibearbeitungs-Software	NCR-XCR000-S135
0	Anschlüsse für Eingangs- und Ausgangssignal	TAE20U9-CN(2)
8	Netzkabel	
Ð	Übergeordnetes Gerät	Muss durch den Kunden bereitgestellt werden.
•	Verbindungskabel für übergeordnetes Gerät	muss durch den kunden bereitgestellt werden.
•	DC24V-Stromversorgung	

Hinweise (1) Für spezifische Kabellängen, bitte **IKI** kontaktieren.

(2) Anschlüsse für Eingangs- & Ausgangssignal TAE20U9-CN ist ein kombiniertes Produkt von 10136-3000PE (Anschluss) und 10336-52F0-008 (Abdeckung) von Sumitomo 3M Limited.

■ Systemkonfiguration für NT55V, NT80V, NT···XZ und NT···XZH

Für Nano Linear NT55V, NT80V, NT···XZ und NT···XZH sind zwei Baureihen an zugehörigen Treibern, ADVA and MR-J4, verfügbar und die Systemkonfiguration unterscheidet sich je nach verwendetem Treiber. Für ADVA sind zwei Ausführungen verfügbar, die Impulsreihenausführung und die Ausführung mit Hochgeschwindigkeitsnetzwerk EtherCAT. Für MR-J4 ist nur die Ausführung mit Hochgeschwindigkeitsnetzwerk SSC-NET III/H verfügbar. Tabelle 8 führt die für die jeweiligen Treiber verwendbaren Tische auf. Tabelle 9 zeigt ein Beispiel für eine Produktbezeichnung für ADVA und Tabelle 10 die Tische und Modellnummer der anwendbaren MR-J4 an. Detaillierte Treiberausführungen finden Sie auf den Seiten II-344 bis II-352.

Bitte beachten Sie, dass die mit MECHATROLINK kompatiblen Treiber je nach Verwendungsart vorbereitet werden. Falls erforderlich, bitte **IK** kontaktieren.

Tabelle 8 Nano Linear NT···V, NT···XZ, NT···XZH und Modellnummern der anwendbaren Treiber

Treiberausführung	Nano Linearmodell
ADVA	NT55V、NT80V、NT···XZ、NT···XZH
MR-J4	NT55V、NT80V

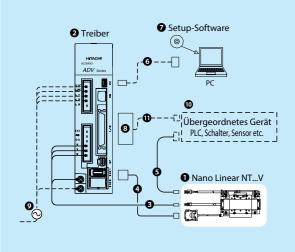
Anmerkung: MR-J4 ist nur anwendbar für eine Ausführung mit Sensor / SC.

Tabele 9 Modellnummer für ADVA

② Stromstärkung und Spannung

ADVA	_	01NL	EC /	/	NT55V25
① Modell		2	3		4

01NL	Einzelphase / Dreiphasen 200 V	
R5ML	Einzelphase 100 V	
③ Befehlstyp		
Kein Symbol	Impulskettenbefehl	
EC	EtherCAT	


	④ Anwendbare Nano Linear-Modell					
	NT55V 25	NT55V 25				
	NT55V 65	NT55V 65				
	NT80V 25	NT80V 25				
	NT80V 65	NT80V 65				
	NT80V120	NT80V120				
	NT80XZ-X	NT80XZ X-Achse				
NT80XZ-Z		NT80XZ Z-Achse				
	NT90XZH	Für NT90XZH X-Achse and Z-Achse				

Tisch 10 Nano Linear NT···V und Modellnummer des anwendbaren MR-14

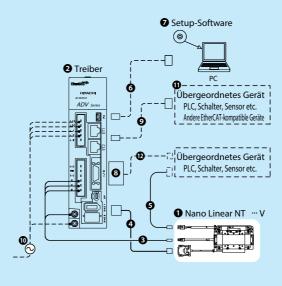
Modellnummer des Treibers
MR-J4-10B-RJ/NT55V25
MR-J4-10B-RJ/NT55V65
MR-J4-10B-RJ/NT80V25
MR-J4-10B-RJ/NT80V65
MR-J4-10B-RJ/NT80V120

Anmerkung: MR-J4-10B ist nur anwendbar für eine Ausführung mit Sensor / SC.

Tabelle 11 Systemkonfiguration für NT···V mit Treiber ADVA

Nr.	Name	Modell und Größe		
8	Motorverlängerungskabel (3 m) (¹)	TAE20V3-AM03		
4	Verlängerungskabel für Encoder (2 m) (¹)	TAE20V4-EC02		
6	Sensorverlängerungskabel (2)	TAE10V8-LC□□		
		USB Mini-B-Kabel		
6	PC-Verbindungskabel	Muss durch den Kunden		
		bereitgestellt werden.		
		ProDriveNext		
		Bitte laden Sie die Software von		
Ø	Setup-Software	der offiziellen Homepage von		
		Hitachi Industrial Equipment		
		Systems Co., Ltd herunter.		
8	I/O-Anschluss	TAE20R5-CN(3)		
Ø	Netzkabel			
0	Übergeordnetes Gerät	Muss durch den Kunden		
0	Verbindungskabel I/O-Anschluss	bereitgestellt werden.		

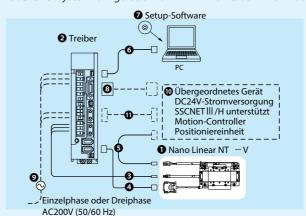
Hinweise (1) Für spezifische Kabellängen, bitte **IK** kontaktieren.


11-249

- (2) Die Längen des Sensor-Verlängerungskabels wird in den Feldern 🗆 am Ende der Produktbezeichnung mit einer Länge von 3 bis 10 Meter in Schritten von 1 m angegeben
- (3) Der I/O-Anschluss TAE20R5-CN ist ein kombiniertes Produkt aus 10150-3000PE (Anschluss) und 10350-52F0-008 (Abdeckung) von Sumitomo

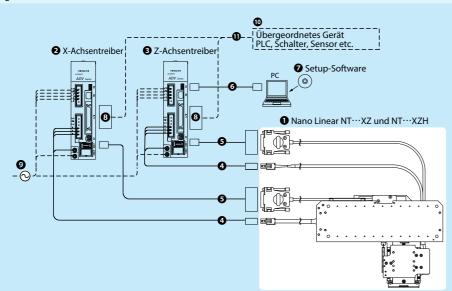
Setup-Software

Zur Bedienung von Nano Linear NT55V, NT80V, NT····XZ und NT····XZH ist eine Grundeinstellung der Treiberparameter notwendig. Die Parametereinstellung des Treibers erfolgt mithilfe der Setup-Software. Sie kann auch zur Signalverstärkung und zur Überprüfung des Betriebsstatus


Im Lieferumfang des Treibers sind Setup-Software und PC-Verbindungskabel nicht enthalten. Diese können für mehrere Treiber verwendet werden, allerdings wird mindestens 1 Set benötigt. Bitte bereiten Sie diese selbst vor oder geben Sie eine separate Bestellung gemäß Ihren Anforderungen auf. Tabelle 12 Systemkonfiguration für NT···V mit Treiber ADVA···EC

Nr.	Name	Modell und Größe	
€	Motorverlängerungskabel (3 m) (¹)	TAE20V3-AM03	
4	Verlängerungskabel für Encoder (2 m) (¹)	TAE20V4-EC02	
6	Sensorverlängerungskabel (²)	TAE10V8-LC□□	
6	PC-Verbindungskabel	USB Mini-B-Kabel Muss durch den Kunden bereitgestellt werden.	
0	Setup-Software	ProDriveNext Bitte laden Sie die Software von der offiziellen Homepage von Hitachi Industrial Equipment Systems Co., Ltd herunter.	
8	I/O-Anschluss	TAE20V5-CN (3)	
9	Ethernet-Kabel		
0	Netzkabel	Marian driveds don Kriss I	
0	Übergeordnetes Gerät	Muss durch den Kunden bereitgestellt werden.	
Ð	Verbindungskabel I/O-Anschluss	bereitgestellt werden.	

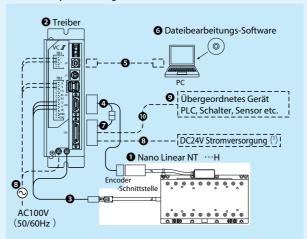
- Hinweise (1) Für spezifische Kabellängen, bitte **IKI** kontaktieren.
 - (2) Die Längen des Sensor-Verlängerungskabels wird in den Feldern 🗆 am Ende der Produktbezeichnung mit einer Länge von 3 bis 10 Meter in
 - (3) Der I/O-Anschluss TAE20V5-CN ist ein kombiniertes Produkt aus 10120-3000PE (Anschluss) und 10320-52F0-008 (Abdeckung) von Sumitomo 3M Limited.


Tabelle 13 Systemkonfiguration für NT···V mit Treiber MR-J4-10B (SSCNET III/H kompatibel)

	Nr.	Name	Produktbezeichnung	
	8	Motorverlängerungskabel (3 m) (¹)	TAE20V3-AM03	
	0	Verlängerungskabel für Encoder (2 m) (¹)	TAE20V6-EC02	
	6	Sensorverlängerungskabel (²)	TAE10V8-LC MR-J3USBCBL3M SW1DNC-MRC2-J MR-CCN1 (3) Muss durch den Kunden bereitgestellt werden.	
	0	PC-Verbindungskabel (3 m)		
	0	Setup-Software		
	8	Verbindungskabel I/O-Anschluss		
	9	Netzkabel		
	0	Übergeordnetes Gerät (4)		
	0	SSCNET III / H-Verbindungskabel		

- Hinweise (1) Für spezifische Kabellängen, bitte **IK** kontaktieren.
 - (2) Die Längen des Sensor-Verlängerungskabels wird in den Feldern 🗆 am Ende der Produktbezeichnung mit einer Länge von 3 bis 10 Meter in Schritten von 1 m angegeben.
 - (3) Die Anschlüsse für den I/O-Anschluss TAE20V5-CN ist ein kombiniertes Produkt aus 10120-3000PE (Anschluss) und 10320-52F0-008 (Abdeckung) von Sumitomo 3M Limited.
 - (4) Die übergeordneten Geräte sind eine Bewegungssteuerung, eine Positioniereinheit und eine DC24V-Stromversorgung vorbereitet für SSCNET III/H von Mitsubishi Electric Corporation.

Tabelle 14 Systemkonfiguration für NT···XZ und NT···XZH


Nr.	Name	Anzahl	Modell und Größe	
0	Nano Linear NT…XZ und NT…XZH	1	NT80XZ4510	NT90XZH2510
2	Treiber für X-Achse	1	ADVA-01NL/NT80XZ-X	ADVA-01NL/NT90XZH
€	Treiber für Z-Achse	1	ADVA-01NL/NT80XZ-Z	ADVA-01NL/NT90XZH
4	Motorverlängerungskabel (3 m) (1)	2	TAE20V3-AM03	
6	Verlängerungskabel für Encoder (2 m) (1)	2	TAE20V4-EC02	
6	PC-Verbindungskabel	1	USB Mini-B-Kabel (Muss durch den Kunden bereitgestellt werden.)	
0	Setup-Software	1	ProDriveNext Bitte laden Sie die Software von der offiziellen Homepage von Hitachi Industrial Equipment Systems Co., Ltd herunter.	
8	I/O-Anschluss	2	TAE20R5-CN(2)	
0	Netzkabel	_	Muss durch den Kunden bereitgestellt werden.	
0	Übergeordnetes Gerät	_		
0	Verbindungskabel I/O-Anschluss	_		

Hinweise (1) Für spezifische Kabellängen, bitte **IK** kontaktieren.

■ Systemkonfiguration von NT···H

Für Nano Linear NT···H gibt es zugehörige Treiber und die Systemkonfiguration wird in Tabelle 15 dargestellt. Eine detaillierte Treiberausführung finden Sie im Abschnitt Treiberausführung auf der Seite II –346. Geben Sie bei der Bestellung bitte die gewünschten Modellnummern aus der Liste aus Tabelle 15 an.

Tabelle 15 Systemkonfiguration von NT···H

Nr.	Name	Modellnummer	
INT.	Name	Modelinummer	
0	Nano Linear NT…H	NT88H	
9	Treiber	NCR-DDA0A1A-051D-T08 TAE20T8-AM03	
6	Motorverlängerungskabel (3 m) (²)		
4	Verlängerungskabel für Encoder (2 m) (²)	TAE20T9-EC02	
6	PC-Verbindungskabel	Muss durch Kunden bereitgestellt werden. USB-Kabel A-Stecker - B-Stecker NCR-XCR000-S135 TAE20U0-CN (3)	
0	Dateibearbeitungs-Software		
0	Anschluss-Set		
8	Netzkabel		
9	Übergeordnetes Gerät	Muss durch den Kunden	
•	Verbindungskabel I/ O-Anschluss	bereitgestellt werden.	

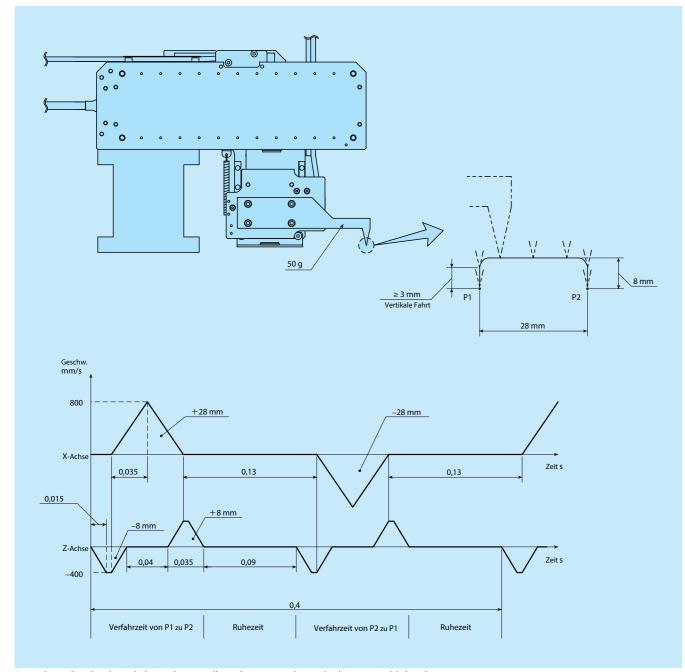
- Hinweise (1) DC24V-Stromversorgung muss durch den Kunden separat bereitgestellt werden.
 - (2) Für spezifische Kabellängen, bitte **IKO** kontaktieren.
 - (3) Das Anschluss-Set TAE20U0-CN besteht aus einem I/O-Anschluss und einem Sensoranschluss (Crimp-Verdrahtung (200 mm)). Der I/O-Anschluss ist ein kombiniertes Produkt aus 10136-3000PE (Anschluss) und 10336-52F0-008 (Abdeckung) von Sumitomo 3M Limited. Der Anschluss für den Sensor ist ein kombiniertes Produkt aus 170365-1 (Kontakt) und 172157-1 (Gehäuse) von Tyco Electronics Japan G.K..

Datenbearbeitungs-Software

Zur Bedienung von Nano Linear NT···H ist eine Grundeinstellung der Treiberparameter erforderlich. Die Parametereinstellung des Treibers erfolgt mithilfe der Datenbearbeitungs-Software.

Im Lieferumfang des Treibers sind Setup-Software und PC-Verbindungskabel nicht enthalten. Diese können für mehrere Treiber verwendet werden, allerdings wird mindestens ein Set benötigt. Bitte geben Sie eine separate Bestellung gemäß Ihren Anforderungen auf.

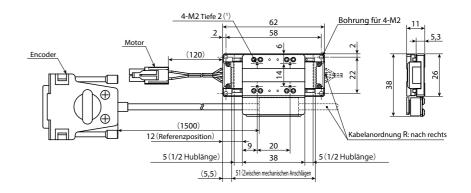
⁽²⁾ Der I/O-Anschluss TAE20R5-CN ist ein kombiniertes Produkt aus 10150-3000PE (Anschluss) und 10350-52F0-008 (Abdeckung) von Sumitomo

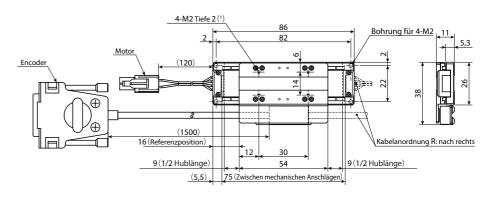

Beispiel eines Ablaufschemas

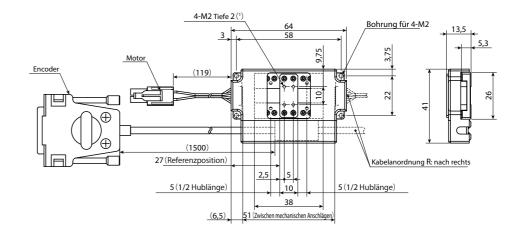
■ Beispiel eines Ablaufschemas von NT···XZ Pick and Place

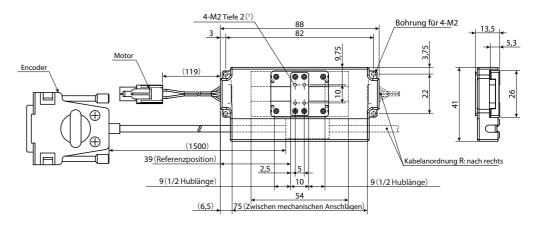

Unten beschrieben finden Sie ein Beispiel für ein Pick and Place-Ablaufschema

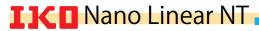
Tabelle 16 Betriebsbedingungen

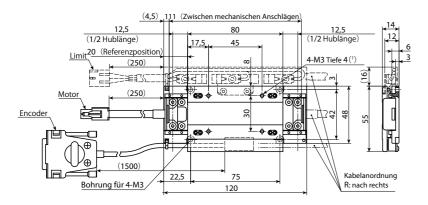

Artikel		Betriebsbedingunger
Belastung	g	50
Verfahrweg X-Achse	mm	28
Verfahrweg Z-Achse	mm	8
Ruhezeit in P1 und P2	S	0,09
1 Zykluszeit	S	0,4
X-Achse tatsächliche	sächliche N	
Vorschubkraft	IN	8,9
Z-Achse tatsächliche	N	2,5
Vorschubkraft	IN	

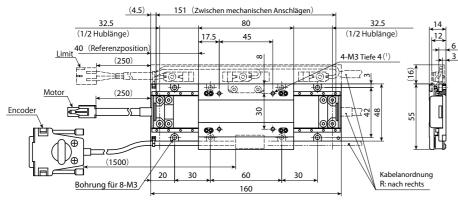

 $Anmerkung: Das \ Geschwindigkeits schema\ stellt\ ein\ Programmschema\ dar,\ keine\ tats\"{a}chlichen\ Bewegungen.$


NT38V10

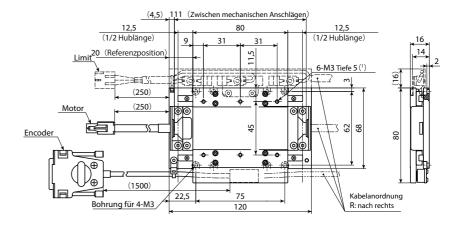

NT38V18

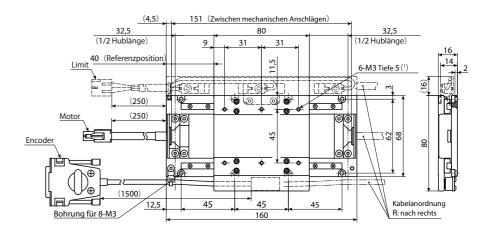

NT38V10/D


NT38V18/D

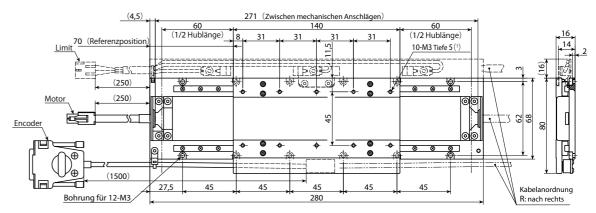

Hinweis (1) Wenn die Befestigungsschraube zu stark angezogen wird, kann die Laufleistung des Verfahrtischs beeinträchtigt werden, weshalb nie eine Schraube eingeführt werden sollte, die länger als die Durchgangsbohrung ist.

NT55V25


NT55V65

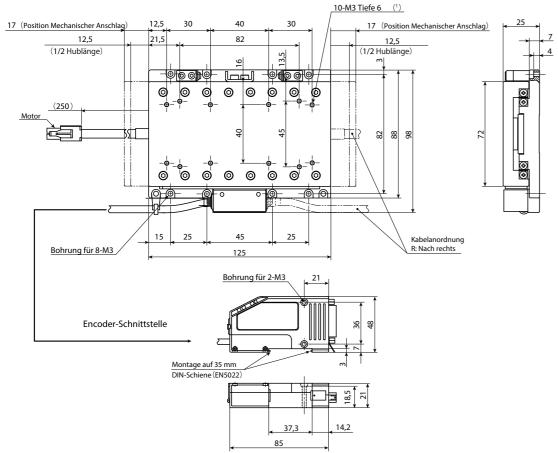

Hinweis (1) Wenn die Befestigungsschraube zu stark angezogen wird, kann die Laufleistung des Verfahrtischs beeinträchtigt werden, weshalb nie eine Schraube eingeführt werden sollte, die länger als die Durchgangsbohrung ist.

Anmerkung: Die gestrichelten Linien in den Abbildungen geben die Ausführung mit Sensoren / SC an.

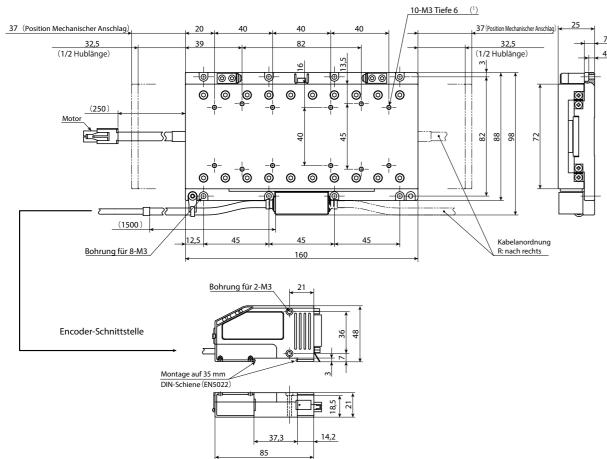

NT80V25

NT80V65

NT80V120

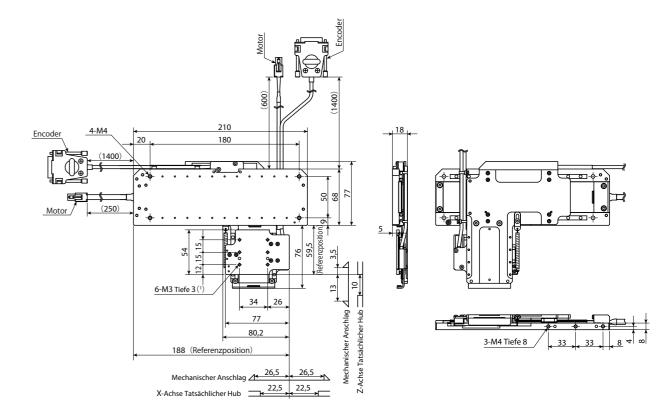


Hinweis (1) Wenn die Befestigungsschraube zu stark angezogen wird, kann die Laufleistung des Verfahrtischs beeinträchtigt werden, weshalb nie eine Schraube eingeführt werden sollte, die länger als die Durchgangsbohrung ist.

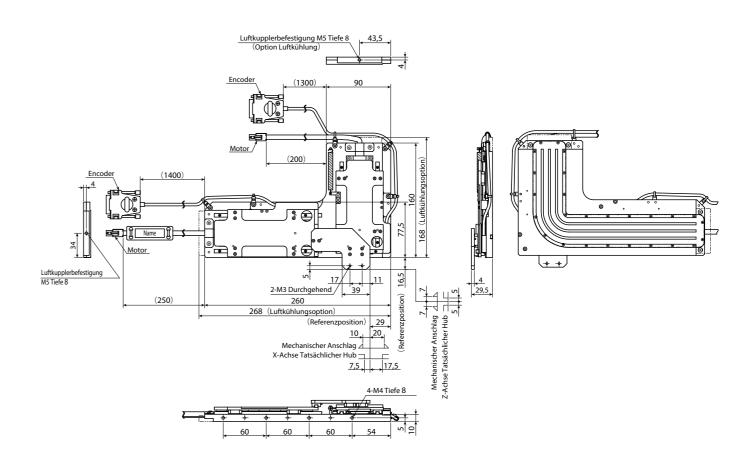

Anmerkungen 1. Die gestrichelten Linien in den Abbildungen geben die Ausführung mit Sensoren / SC an.

2. Die XY-Ausführung mit zwei Achsen als Kombination aus NT80V und NT80V25 als obere Achse wird vor dem Versand von **IKU** zusammengebaut.

NT88H25



NT88H65



Hinweis (1) Wenn die Befestigungsschraube zu stark angezogen wird, kann die Laufleistung des Verfahrtischs beeinträchtigt werden, weshalb nie eine Schraube eingeführt werden sollte, die länger als die Gewindebohrung ist.

NT80XZ

NT90XZH

Hinweis (1) Wenn die Befestigungsschraube zu stark angezogen wird, kann die Laufleistung des Verfahrtischs beeinträchtigt werden, weshalb nie eine Schraube eingeführt werden sollte, die länger als die Durchgangsbohrung ist.

Kreuzrollenlager

Mechanischer Anschlag

Statorspule

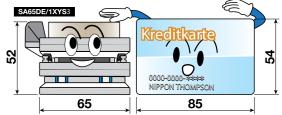
Statorspule

Mitfahrender Magnet

Mitfahrender Magnet

Vorteile

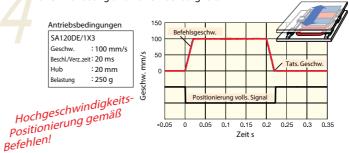
lacktriangle Kompakter XYheta-Tisch

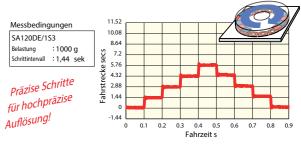

Die Verwendung einer Kugelumlaufführung Lals Miniatur-Wälzkörper-Linearführung in der linearen Tischausführung und einem Kreuzrollenlager in der Rotationsführung sowie die direkte Antriebsmethode verleihen diesem Ausrichttisch ein flaches Profil und eine kompakte XY θ -Bewegung.

lue Flexible Kombination von XY heta

X-Tisch für Linearbewegung und θ -Tisch für die rotative Positionierung werden als Basiskonfiguration aufgeführt. Eine Kombination aus X-Achse und heta-Achse sowie Ausrichttisch für XY-Achse können leicht konfiguriert werden.

Dünn und kompakt


Eisenloser Linearmotor, Kugelumlaufführung L und Kreuzrollenlager werden verwendet. Verglichen mit dem Ausrichttisch mit Spindelantrieb wird so ein flaches Profil erzielt.



Hohe Auflösung und schnelles Ansprechverhalten

Die Verwendung des geschlossenen Regelkreises des direkt angetrieben Tisches mit eingebautem hochauflösenden Linear Encoder führt zu einer hohen Auflösung und hohen Genauigkeit.

Auflösung!

Wichtige Produktbeschreibungen

Antriebsmethode	Linearmotor
Rollenumlaufführung und Lager	XY-Achse: Kugelumlaufführung $ heta$ -Achse: Kreuzrollenlager
Schmierplatte	Eingebaute "C-Lube"-Schmierplatte $(\theta$ -Achse nicht mitgeliefert.)
Tisch- und Gestellmaterial	Hochfester Stahl
Sensor	Standardmäßig enthalten

Genauigkeit

Mechanischer Anschlag

	Einheit: mm
Wiederholgenauigkeit	XY-Achse: \pm 0,0005 θ -Achse: \pm 0,5 \sim 1,3 sek
Positioniergenauigkeit	-
Leerlauf	-
Parallelität der Tischbewegung A	-
Parallelität der Tischbewegung B	-
Verwindungsgenauigkeit	-
Geradheit	-
Umkehrspiel	-

Linearmotorantrieb

X-Tisch

Kugelumlaufführung

Optischer Linear Encoder

Skalenkopf

C-Lube

 θ -Tisch

Ausrichttisch SA Ausführungsliste

		SA65	DE/X	SA12	DDE/X	SA65DE/S	SA120DE/S	SA200DE/S
Modell und Größe								
Querschnitt		65		¥_₩-==	120	65	120	200
Max. Vorschubkraft	N	25	70		Max. Drehmoment 0,5 N·m	Max. Drehmoment 2,0 N·m	Max. Drehmoment 4,0 N·m	
Nennvorschubkraft	N	3	,5 15		5	Nenndrehmoment 0,06 N·m	Nenndrehmoment 0,4 N·m	Nenndrehmoment 1,2 N·m
Max. Nutzlast	kg	2	2,4	5,9		2.2	6.8	12.3
Tatsächliche Hublänge	mm	10)	20		Tatsächlicher Bedienwinkel 50°	Tatsächlicher Bedienwinkel 60°	Tatsächlicher Bedienwinkel 280°
Auflösung	μm	0,1	0,5	0,1	0,5	0,64 sek 5625 Impulse/Grad	0,36 sek 10000 Impulse/Grad	0,25 sek 14400 Impulse/Grad
Max. Geschwindigkeit	mm/s	270	500	400	800	720 Grad/sek	400 Grad/sek	270 Grad/sek
Wiederholgenauigkeit	μ m	±().5	±0.5		±1,3 sek	±0,8 sek	±0,5 sek

1N=0,102kgf=0,2248lbs.

1mm=0,03937 Zoll

Beispiel einer Produktbezeichnung 1 2 1 3 4 5 6 SA 120 DE / 5 XYS R 3 1 Modell Seite II 263 2 Größe Seite II 263 3 Auflösung Seite II 263 5 Oberflächenbehandlung Seite II 263 6 Bezeichnung der Ausführung Seite II 263

Produktbezeichnung und Ausführung

Modell	SA···DE: Ausrichttisch SA
2 Größe	65: □ 65, Ø 65 120: □120, Ø 120 200: Ø 200
A . a::	
3 Auflösung	 1: 0,1 μm 5: 0,5 μm Geben Sie die Auflösung des Encoders für die X-Achse oder XY-Achse an. Wenn nur S ausgewählt wird: θ-Achse bei der Angabe von Abschnitt Φ, "Kein Symbol " für die Auflösung angeben.
4 Achsenkonfiguration	
	Wählen Sie eine Achsenkonfiguration aus der Liste in Tabelle 1 aus.

Tabelle 1 Achsenkonfiguration und Anwendung

		J		
	Achsenkonfiguration	SA65DE	SA120DE	SA200DE
X	: Nur X-Achse	0	0	-
S	: Nur $ heta$ -Achse	0	0	0
XY	: XY-basierte Ausführung mit 2 Achsen	0	0	
XS	: X θ -basierte Ausführung mit 2 Achsen	0	0	_
XY	S: X, Y, und θ -basierte Ausführung mit 3 Achsen	0	0	

5 Oberflächenbehandlung	Kein Symbol: Vernickelung R: Schwarzchromatierung der Oberflächen Die Schwarzchromatierung der Oberflächen wird auf den Oberflächen von Schlitten und Tisch aufgebracht.	
6 Bezeichnung der Ausführung	3: Ausführungsanzahl 3 Die Anzahl der Ausführungen ist auf 3 begrenzt.	

Ausführungen.

Tabelle 2.1 Ausführung / Leistung

Produktbezeichnung Artikel	SA65DE/1X	SA65DE/5X	SA120DE/1X	SA120DE/5X
Maximale Vorschubkraft (1) N	25		70	
Nennvorschubkraft (²) N	3,5	5	15	5
Wirksame Hublänge mm	10		20)
Maximale Nutzlast kg	2,4		5,9	
Auflösung μ m	0,1	0,5	0,1	0,5
Maximale Geschwindigkeit (3) mm/s	270	500	400	800
Wiederholgenauigkeit (4) μm		±(
Masse des Verfahrtischs kg	0,	17	1,	,2
Gesamtmasse (5) kg	0,35		2	,5
Umgebungstemperatur und Feuchtigkeit beim Betrieb	0~40 °C • 20~80 % RH (kondensfrei halten)			

Hinweise (1) Die Dauer der maximalen Vorschubkraft beträgt bis zu 1 Sekunde.

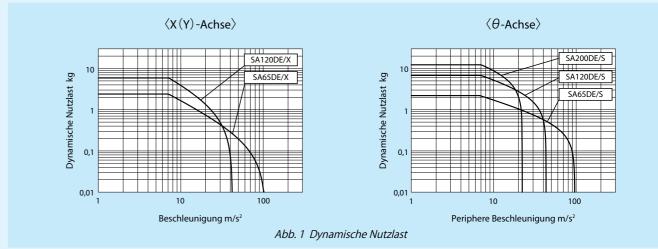
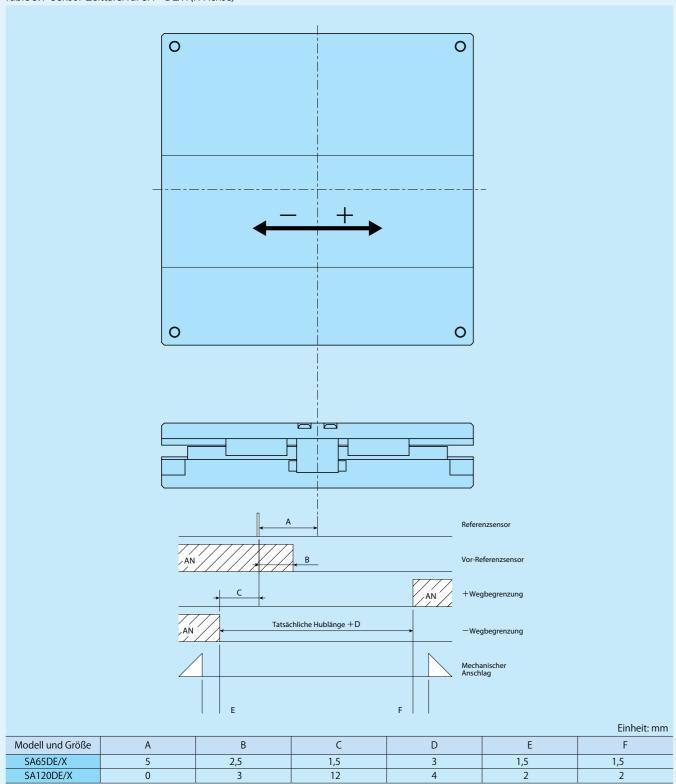

- (2) Dies basiert auf dem Fall der Montage an einem Gegenstück aus Metall bei einer Umgebungstemperatur von 20°C.
- (3) Sollte die angezeigte Geschwindigkeit überschritten werden, bitte **IKO** kontaktieren.
- (4) Wenn die Produkttemperatur konstant ist.
- (5) Masse des Kabels ist nicht inbegriffen.

Tabelle 2.2 Ausführung / Leistung

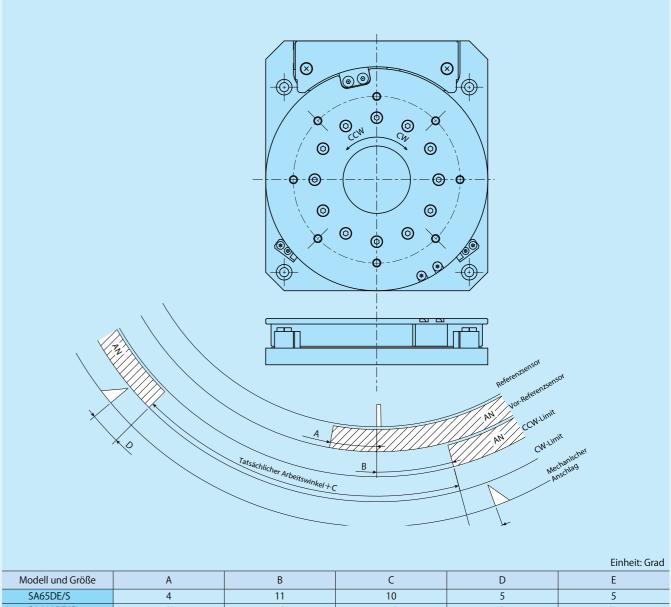
rubene 2.2 /lustamung/ Leistung			
Produktbezeich: Artikel	SA65DE/S	SA120DE/S	SA200DE/S
Maximaler Drehmoment (1) N·m	0,5	2,0	4,0
Nenndrehmoment (²) N•m	0,06	0,4	1,2
Maximale Nutzlast kg	2,2	6,8	12,3
Tatsächlicher Bedienwinkel Grad	50	60	280
Auflösung sek.	0,64	0,36	0,25
Puls/Gr	ad 5 625	10 000	14 400
Maximale Geschwindigkeit (3) Grad/se	ek 720	400	270
Wiederholgenauigkeit (4) sek.	±1,3	±0,8	±0,5
Trägheitsmoment des Verfahrtisches kg·m²	0,00012	0,002	0,013
Gesamtmasse (5) kg	0,5	2	6
Umgebungstemperatur und Feuchtigkeit beim Betrieb	0	~40 °C · 20~80 % RH (kondensfrei ha	lten)

Hinweise (1) Die Dauer des maximalen Drehmoments beträgt bis zu 1 Sekunde.


- (2) Dies basiert auf dem Fall der Montage an einem Gegenstück aus Metall bei einer Umgebungstemperatur von 20 °C.
- (3) Sollte die angezeigte Geschwindigkeit überschritten werden, bitte **IK** kontaktieren.
- (4) Wenn die Produkttemperatur konstant ist.
- (5) Masse des Kabels ist nicht inbegriffen.

Anmerkung: Dynamische Nutzlast der θ -Achse ist ein Wert, der bei Annahme eines Stahlwürfels ermittelt wurde. Außerdem wird die Beschleunigung als Wert des Umfang des Drehtisches umgerechnet.

Ausführung mit Sensoren


Table 3.1 Sensor-Zeittafel für SA···DE/X (X-Achse)

Hinweise 1 Die jeweiligen Werte sind Referenzen und keine garantierten Werte. Für detaillierte Abmessungen, kontaktieren Sie bitte **IKO**

Ausführung mit Sensoren

Table 3.2 Sensor-Zeittafel für SA···DE/X (θ-Achse)

 SA120DE/S
 3
 3
 6
 3
 3

 SA200DE/S
 2
 4
 0
 4
 4

Hinweise 1 Die jeweiligen Werte sind Referenzen und keine garantierten Werte. Für detaillierte Abmessungen, kontaktieren Sie bitte **IKI**. 2. Die Ausführungen der jeweiligen Sensoren finden Sie im Abschnitt Sensorausführung unter Allgemeine Erläuterung.

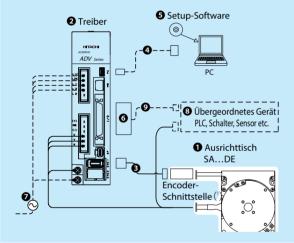
^{2.} Die Ausführungen der jeweiligen Sensoren finden Sie im Abschnitt Sensorausführung unter Allgemeine Erläuterung.

Systemkonfiguration

Für den Ausrichttisch SA sind zwei Baureihen von zugehörigen Treibern verfügbar, ADVA and MR-J4, und die Systemkonfiguration unterscheidet sich je nach verwendetem Treiber. Für ADVA sind zwei Ausführungen verfügbar, Impulskettenausführung und die Ausführung mit Hochgeschwindigkeitsnetzwerk EtherCAT. Für MR-J4 ist nur die Ausführung mit Hochgeschwindigkeitsnetzwerk SSCNET III/H verfügbar. Tabelle 4 zeigt ein Beispiel für eine Produktbezeichnung für ADVA und Tabelle 5 die Tische und Modellnummer der anwendbaren MR-J4 an. Detaillierte Treiberausführungen finden Sie auf den Seiten II-347 bis II -350.

Tabelle 4 Modellnummer für ADVA

ADVA	A –	01NL	EC	/	SA65DE-S
(1) Mode	ااد	(2)	(3)		(4)

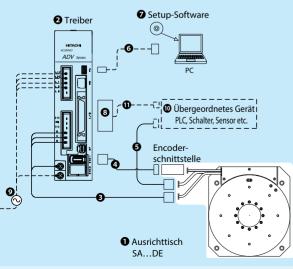

(2) Stromstärke und Spannung		
01NL	Einzelphase / Dreiphasen 200 V	
R5ML	Einzelphase 100 V	
(3) Befehlstyp		
I/ -! C I I		

(4) Anwendbares Ausrichttischmodell		
SA65DE -S	SA65DE /S	
SA65DE -X	SA65DE /X	
SA120DE -S	SA120DE /S	
SA120DE -X	SA120DE /X	
SA200DE -S	SA200DE /S	

Tabelle 5 Produktbezeichnung von SA...DE und anwendbare MR-J4

Produktbezeichnung des Tisches	Produktbezeichnung des Treibers
SA65DE /S	MR-J4-10B-RJ /SA65DE -S
SA65DE /X	MR-J4-10B-RJ /SA65DE -X
SA120DE /S	MR-J4-10B-RJ /SA120DE -S
SA120DE /X	MR-J4-10B-RJ /SA120DE -X
SA200DE /S	MR-J4-10B-RJ /SA200DE -S

Tabelle 6 Systemkonfiguration für SA65DE, SA120DE mit Treiber ADVA



Nr.	Name	Produktbezeichnung
6	Encoder-Verlängerungskabel (2m) (²)	TAE20V4-EC02
4	PC-Verbindungskabel	USB Mini-B-Kabel Muss durch d. Kunden bereitgestellt werden.
6	Setup-Software	ProDriveNext Bitte downladen Sie die Software von der offiziellen Homepage von Hitachi Industrial Equipment Systems Co., Ltd.
0	I/O-Anschluss	TAE20R5-CN(3)
Ø	Netzkabel	Muss durch den Kunden
8	Übergeordnetes Gerät	bereitgestellt werden.
9	Verbindungskabel I/O-Anschluss	bereitgestellt Werderl.

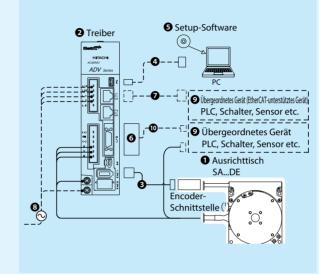
Hinweise (1) XY-Achse des SA65DE wird nicht mit Encoder-Schnittstelle geliefert.

- (2) Für spezifische Kabellängen, bitte **IKI** kontaktieren.
- (3) Der I/O-Anschluss TAE20R5-CN ist ein kombiniertes Produkt aus 10150-3000PE (Anschluss) und 10350-52F0-008 (Abdeckung) von Sumitomo 3M Limited.

Tabelle 7 Systemkonfigurierung für SA200DE/S mit Treiber ADVA

Nr.	Name	Produktbezeichnung
6	Motorverlängerungskabel (3 m) (¹)	TAE20V3-AM03
4	Encoder-Verlängerungskabel (2 m) (1)	TAE20V4-EC02
6	Sensorverlängerungskabel (²)	TAE10V8-LC□□
6	PC-Verbindungskabel	USB Mini-B-Kabel Muss durch d. Kunden bereitgestellt werden.
0	Setup-Software	ProDriveNext Bitte downladen Sie die Software von der offiziellen Homepage von Hitachi Industrial Equipment Systems Co., Ltd.
8	I/O-Anschluss	TAE20R5-CN (3)
ø	Netzkabel	Muss durch den Kunden
•	Übergeordnetes Gerät	bereitgestellt werden.
0	Verbindungskabel I/O-Anschluss	berengestellt werden.

Hinweise (¹) Für spezifische Kabellängen, bitte **IK IK** kontaktieren.

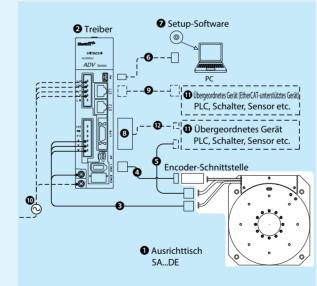

- (2) Die Längen des Sensor-Verlängerungskabels wird in den Feldern 🗆 am Ende der Produktbezeichnung mit einer Länge von 3 bis 10 Meter in Schritten von 1 m angegeben.
- (3) Der I/O-Anschluss TAE20R5-CN ist ein kombiniertes Produkt aus 10150-3000PE (Anschluss) und 10350-52F0-008 (Abdeckung) von Sumitomo 3M Limited.

Setup-Software

Zur Bedienung des Ausrichttisch SA ist eine Grundeinstellung der Treiberparameter erforderlich. Die Parametereinstellung des Treibers erfolgt mithilfe der Setup-Software. Sie kann auch zur Signalverstärkung und zur Überprüfung des Betriebsstatus verwendet werden.

Die Setup-Software und das PC-Verbindungskabel sind nicht im Treiber enthalten. Diese können für mehrere Treiber verwendet werden, allerdings wird mindestens 1 Set benötigt. Bitte bereiten Sie diese selbst vor oder geben Sie eine separate Bestellung gemäß Ihren Anforderungen auf.

Tabelle 8 Systemkonfigurierung für SA65DE, SA120DE mit Treiber ADVA...EC

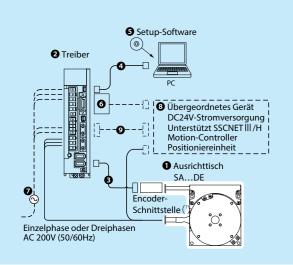


Nr.	Name	Produktbezeichnung
6	Encoder-Verlängerungskabel (2m) (²)	TAE20V4-EC02
4	PC-Verbindungskabel	USB Mini-B-Kabel Muss durch d. Kunden bereitgestellt werden.
6	Setup-Software	ProDriveNext Bitte downladen Sie die Software von der offiziellen Homepage von Hitachi Industrial Equipment Systems Co., Ltd.
0	I/O-Anschluss	TAE20V5-CN(3)
Ø	Ethernet-Kabel	
8	Netzkabel	Muss durch den Kunden
Ø	Übergeordnetes Gerät	bereitgestellt werden.
•	Verbindungskabel I/O-Anschluss	

Hinweise (1) XY-Achse des SA65DE wird nicht mit Encoder-Schnittstelle geliefert.

- (2) Für spezifische Kabellängen, bitte **IK** kontaktieren.
- (3) Der I/O-Anschluss TAE20V5-CN ist ein kombiniertes Produkt aus 10120-3000PE (Anschluss) und 10320-52F0-008 (Abdeckung) von Sumitomo 3M Limited

Tabelle 9 Systemkonfigurierung für SA200DE/S mit Treiber ADVA...EC

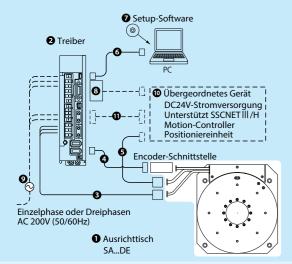


Nr.	Name	Produktbezeichnung
8	Motorverlängerungskabel (3 m) (1)	TAE20V3-AM03
0	Encoder-Verlängerungskabel (2 m) (1)	TAE20V4-EC02
6	Sensorverlängerungskabel (²)	TAE10V8-LC□□
•	PC-Verbindungskabel	USB Mini-B-Kabel Muss durch d. Kunden bereitgestellt werden.
0	Setup-Software	ProDriveNext Bitte downladen Sie die Software von der offiziellen Homepage von Hitachi Industrial Equipment Systems Co., Ltd.
8	I/O-Anschluss	TAE20V5-CN (3)
9	Ethernet-Kabel	
•	Netzkabel	Muss durch den Kunden
•	Übergeordnetes Gerät	bereitgestellt werden.
®	Verbindungskabel I/O-Anschluss	

Hinweise (1) Für spezifische Kabellängen, bitte **IKD** kontaktieren.

- (2) Die Längen des Sensor-Verlängerungskabels wird in den Feldern \square am Ende der Produktbezeichnung mit einer Länge von 3 bis 10 Meter in Schritten von 1 m angegeben.
- (3) Der I/O-Anschluss TAE20V5-CN ist ein kombiniertes Produkt aus 10120-3000PE (Anschluss) und 10320-52F0-008 (Abdeckung) von Sumitomo 3M Limited.

Tabelle 10 Systemkonfiguration (SSCNET III/H unterstützt) für SA···DE mit Treiber MR-J4-10B



Nr.	Name	Produktbezeichnung
6	Encoder-Verlängerungskabel (2 m) (²)	TAE20V6-EC02
4	PC-Verbindungskabel (3 m)	MR-J3USBCBL3M
6	Setup-Software	SW1DNC-MRC2-J
0	Anschlüsse für Eingangs/Ausgangs-Signal	MR-CCN1 (3)
0	Netzkabel	Muss durch den Kunden
8	Übergeordnetes Gerät (4)	bereitgestellt werden.
0	Verbindungskabel für SSCNET III/H	berengestent werden.

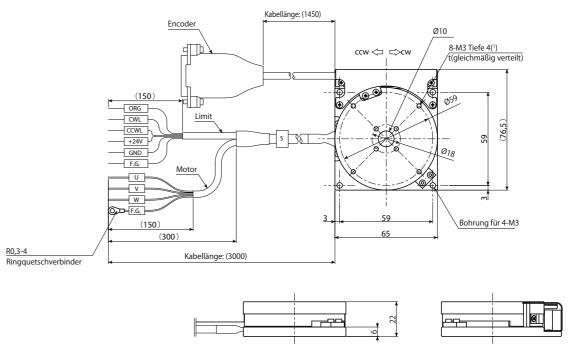
Hinweise (1) XY-Achse des SA65DE wird nicht mit Encoder-Schnittstelle geliefert.

- (2) Für spezifische Kabellängen, bitte **IKO** kontaktieren.
- (3) Der Ånschluss für Eingangs/Ausgangs-Signal TAE20V5-CN ist ein kombiniertes Produkt aus 10120-3000PE (Anschluss) und 10320-52F0-008 (Abdeckung) von Sumitomo 3M Limited.
- (4) Die übergeordneten Geräte sind Bewegungssteuerungen, eine Positioniereinheit und eine DC24V-Stromversorgung vorbereitet für SSCNET III/H von Mitsubishi Electric Corporation.

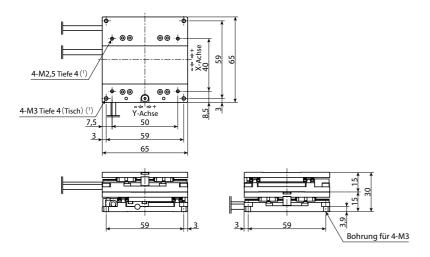
Tabelle 11 Systemkonfiguration (SSCNET III/H unterstützt) für SA200DE/S mit Treiber MR-J4-10B

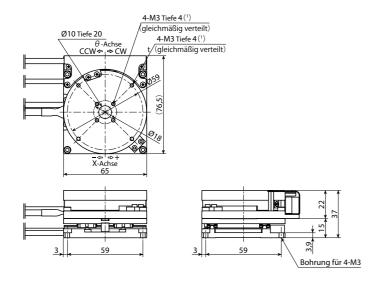
Nr.	Name	Produktbezeichnung				
6	Motorverlängerungskabel (3 m) (¹)	TAE20V3-AM03				
4	Encoder-Verlängerungskabel (2 m) (¹)	TAE20V6-EC02				
6	Sensorverlängerungskabel (2)	TAE10V8-LC□□				
6	PC-Verbindungskabel (3 m)	MR-J3USBCBL3M				
0	Setup-Software	SW1DNC-MRC2-J				
3	Anschlüsse für Eingangs/Ausgangs-Signal	MR-CCN1 (3)				
Ø	Netzkabel	Muss durch den Kunden				
0	Übergeordnetes Gerät (4)	bereitgestellt werden.				
0	Verbindungskabel für SSCNET III/H	bereitgestellt werden.				

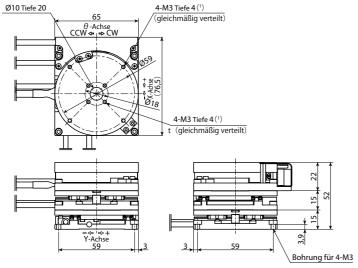
Hinweise (1) Für spezifische Kabellängen, bitte **IKI** kontaktieren.


- (2) Die Längen des Sensor-Verlängerungskabels wird in den Feldern \square am Ende der Produktbezeichnung mit einer Länge von 3 bis 10 Meter in Schritten von 1 m angegeben.
- (3) Der Anschluss für Eingangs/Ausgangs-Signal TAE20V5-CN ist ein kombiniertes Produkt aus 10120-3000PE (Anschluss) und 10320-52F0-008 (Abdeckung) von Sumitomo 3M Limited.
- (4) Die übergeordneten Geräte sind Bewegungssteuerungen, eine Positioniereinheit und eine DC24V-Stromversorgung vorbereitet für SSCNET III/H von Mitsubishi Electric Corporation.

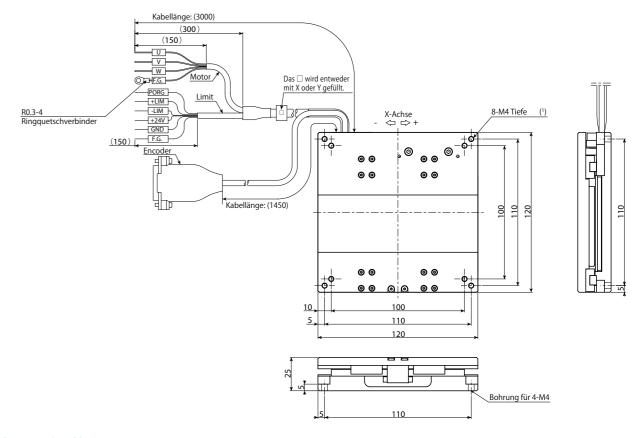
SA65DE/X

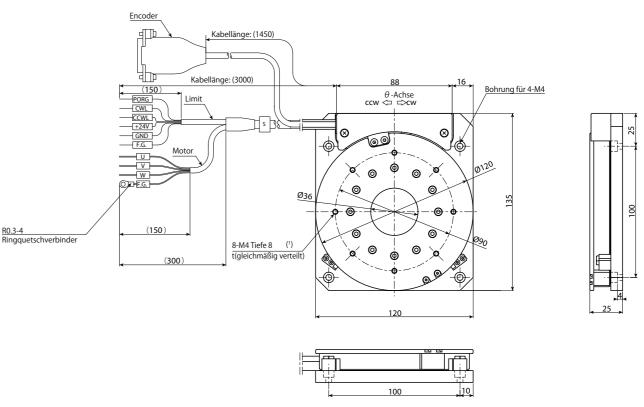

SA65DE/S


Hinweis (1) Wenn die Befestigungsschraube zu stark angezogen wird, kann die Laufleistung des Verfahrtischs beeinträchtigt werden, weshalb nie eine Schraube eingeführt werden sollte, die länger als die Durchgangsbohrung ist.


SA65DE/XY

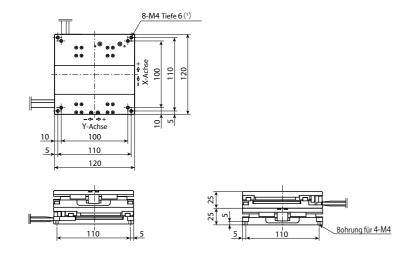
SA65DE/XS

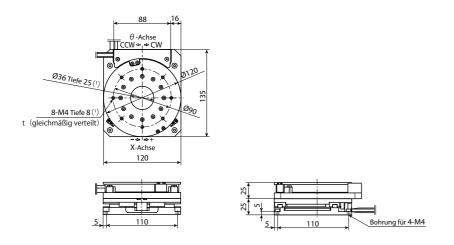

SA65DE/XYS

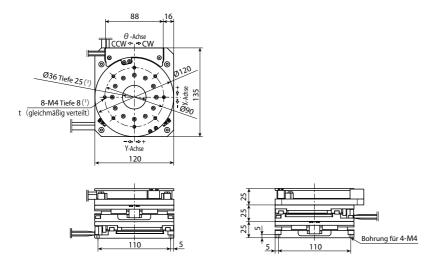

Hinweis (1) Wenn die Befestigungsschraube zu stark angezogen wird, kann die Laufleistung des Verfahrtischs beeinträchtigt werden, weshalb nie eine Schraube eingeführt werden sollte, die länger als die Durchgangsbohrung ist.

Anmerkung: Für die Kabellänge, siehe Maßtabellen für SA65DE/X und SA65DE/S.

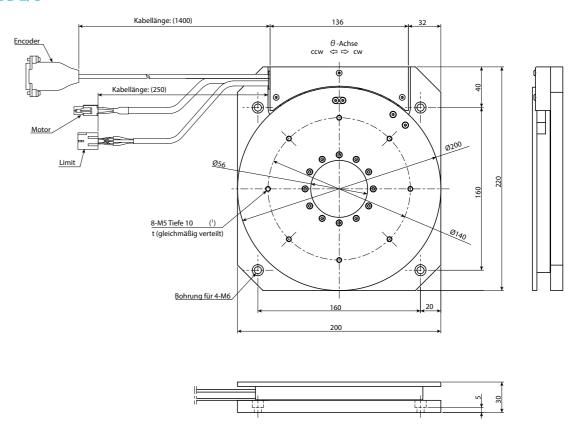
SA120DE/X


SA120DE/S


Hinweis (1) Wenn die Befestigungsschraube zu stark angezogen wird, kann die Laufleistung des Verfahrtischs beeinträchtigt werden, weshalb nie eine Schraube eingeführt werden sollte, die länger als die Durchgangsbohrung ist.


SA120DE/XY

SA120DE/XS


SA120DE/XYS

Hinweis (1) Wenn die Befestigungsschraube zu stark angezogen wird, kann die Laufleistung des Verfahrtischs beeinträchtigt werden, weshalb nie eine Schraube eingeführt werden sollte, die länger als die Durchgangsbohrung ist.

Anmerkung: Für die Kabellänge, siehe Maßtabellen für SA120DE/X und SA120DE/S.

SA200DE/S

Hinweis (1) Wenn die Befestigungsschraube zu stark angezogen wird, kann die Laufleistung des Verfahrtischs beeinträchtigt werden, weshalb nie eine Schraube eingeführt werden sollte, die länger als die Durchgangsbohrung ist.

Encoder-Schnittstelle

(nicht mitgeliefert)

LT (LT····CE, LT····LD, LT····H)

II-275

Leerlauf

Geradheit Umkehrspiel

Parallelität der Tischbewegung A

Parallelität der Tischbewegung B

Verwindungsgenauigkeit

Kompakte LT-Baureihe mit hoher Vorschubkraft und langem Hub!

Der Linearmotortisch LT ist ein kompakter und hochpräziser Positioniertisch mit eingebautem optischen Liner Encoder und mit einem zwischen dem Verfahrtisch und dem Gestell eingebauten AC-Linear-Servormotor. Das geringe Gewicht des Verfahrtischs und die hohe Vorschubkraft ermöglichen eine hohe Beschleunigung und Verzögerung sowie ein schnelles Ansprechverhalten. Außerdem erzielt die fortschrittliche Servo-Technologie eine hohe statische Stabilität und Geschwindigkeitsstabilität.

Drei Modelle, Kompakte Ausführung LT····CE, Ausführung mit großem Hub LT····LD und Ausführung mit hoher Vorschubkraft LT····H, sind in der Aufstellung gelistet, wodurch Sie die Ausführung auswählen können, die am besten zu Ihrem Verwendungszweck passt.

Linearmotortisch LT Ausführungsliste

		Kompakte Ausführung LTCE				Ausführung mit großem Hub LTLD										
Madall und Cräßa	M - 1-11 1 C - " 0 -		T100CEC	i	LT150CEG		LT130LDG		LT170LDG		LT170LDV		/			
Modell und Größe																
Querschnittsform		100		150		130		170								
Max. Vorschubkraft	N		150		450		150		450		190					
Nennvorschubkraft	N		15		60		15		60			25				
Max. Nutzlast	kg		15			45		15		45			28			
Tatsächliche Hublänge	mm		1000			1200			2760		2720			2720		
Auflösung	μm	0,1	0,5	1,0	0,1	0,5	1,0	0,1	0,5	1,0	0,1	0,5	1,0	0,1	0,5	1,0
Max. Geschwindigkeit	mm/s	700	2000	2000	700	2000	2000	700	2000	3000	700	2000	2000	700	2000	3000
Wiederholgenauigkeit	μm	±0,5	±0,5	±1,0	±0,5	±0,5	±1,0	±0,5	±0,5	±1,0	±0,5	±0,5	±1,0	±0,5	±0,5	±1,0

	Ausführung mit hoher Vorschubkraft LT···H				
Modell und Größe		LT170H			
Modell und Große					
Querschnittsform			170	63	
Max. Vorschubkraft	N	900			
Nennvorschubkraft	N	Luftselbstkühlung : 120 Luftkühlung : 150			
Maximale Nutzlast	kg	90			
Tatsächliche Hublänge	mm		2670		
Auflösung	μm	0,1	0,5	1,0	
Max. Geschwindigkeit	mm/s	700	1500 (2000)	1500 (2000)	
Wiederholgenauigkeit	μm	±0,5	±0,5	±1,0	

Sensor

Eingebaute Schmierplatte

Tisch- und Gestellmaterial

Eingebaute "C-Lube"-Schmierplatte

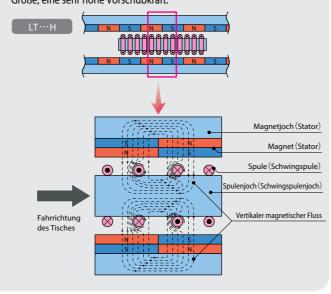
Hochfeste Aluminiumlegierung

Nach Produktbezeichnung auswählen

Funktionssprinzip des Linearmotortisches LT

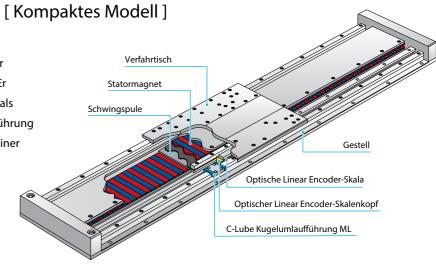
Der Linearmotortisch LT besteht aus einer sich bewegenden Feldspule und einem Stator mit einem auf der Innenseite eines C-Typ-Jochs gerichteten Magneten. Der vertikal angewendete magnetische Fluss und der Drehfluss, der um die Spule durch Strom erzeugt wird, verursacht die horizontale Bewegung der Spule.

(Flemings Linke-Hand-Regel)


LT···CE und LT···LD

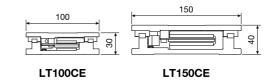
Magnetjoch (Stator)

Fahrrichtung des Tisches


Fluss

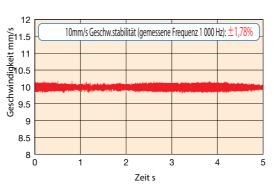
Durch Umschalten des Spulenstroms in die der Flussrichtung entsprechenden Richtung kann eine kontinuierliche Vorschubkraft in einer bestimmte Richtung erzielt werden und die Linearbewegung des Rotators bleibt erhalten. Bei der Baureihe mit hoher Vorschubkraft werden die Spulen eng beieinander in einem vertikalen magnetischen Fluss angeordnet, der durch zwei übereinander angeordnete Spulenjoche generiert wird. Daher erzeugt sie, trotz ihrer geringen Größe, eine sehr hohe Vorschubkraft.

LT···CE


LT···CE ist ein kompakter Linearmotortisch mit der Fähigkeit eine hohe Vorschubkraft zu erzeugen. Er verwendet eine C-Lube Kugelumlaufführung ML als Miniatur-Wälzkörper-Linearführung in der Tischführung und besitzt einen sehr leichten Verfahrtisch aus einer Aluminiumlegierung.

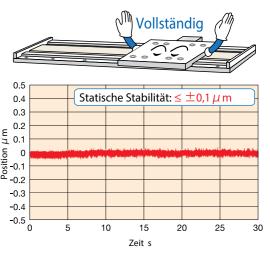
Vorteile

Kompakt


Design mit flachem Profil und weiterer Verkleinerung durch Verwendung einer C-Lube Kugelumlaufführung ML und kleinem optischen Linear Encoder. Minimale Querschnittshöhe von 30 mm (LT100CE).

Hohe Geschwindigkeitsstabilität

Direktantrieb und fortschrittliche Servo-Technologie führen zu einer hohen Geschwindigkeitsstabilität.



* Wert bei Verwendung eines ADVA-Treibers.

Statische Stabilität

Fortschrittliche Servo-Technologie erzielt eine hohe statische Stabilität

* Wert bei Verwendung eines ADVA-Treibers.

Hohe Beschleunigung / Verzögerung und hohe Reaktivität

Diese Einheit ist klein, kann aber eine große Vorschubkraft erzeugen. Der aus einer Aluminumlegierung gefertigte Verfahrtisch mit geringem Gewicht ermöglicht eine Positionierung mit hoher Beschleunigung/Verzögerung und hoher Reaktivität. Dies trägt zur Verkürzung der Taktzeit bei.

1N=0,102kgf=0,2248lbs. 1mm=0,03937 Zoll

[Modell mit langem Hub]

Durch die Verwendung der C-Lube Kugelumlaufführung ME mit Führungsschiene für Statormagnet Stoßverbindungen in der Tischführung, handelt es sich bei LT···LD um einen Linearmotortisch, der einen Schwingspule Betrieb mit langem Hub und hoher Geschwindigkeit ermöglicht. Optische Linear-Encoder-Skala Optischer Linear-Encoder-Skalenkopf C-Lube Kugelumlaufführung ME

Vorteile

II-281

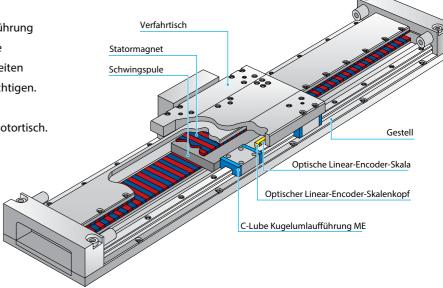
Hohe Geschwindigkeit

Der Direktantrieb ermöglicht sowohl eine hochgenaue Positionierung als auch eine hohe Geschwindigkeit. Der für eine lange Hubbewegung erforderliche Hochgeschwindigkeitsbetrieb wird unterstützt. Hochgeschwindigkeitsbewegungen von bis zu 3000 mm/s sind möglich

Max. Geschwindigkeit: 3 000n 5000 4000 3000 2000 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Zeit s

* Wert bei Verwendung eines ADVA-Treibers.

Super langer Hub


Durch die Verwendung der C-Lube Kugelumlaufführung ME mit Führungsschiene für Stoßverbindungen, erzielt diese Einheit einen langen Hub von bis zu 2760 mm spezifisch für Linearmotorantrieb. (Sollte ein noch längerer Hub erforderlich sein, kontaktieren Sie bitte **IK**.)

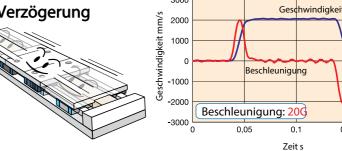
$LT \cdots H$

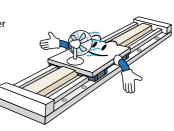
[Modell mit hoher Vorschubkraft]

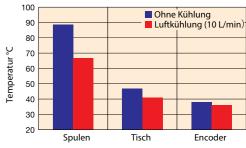
LT···H verwendet eine C-Lube Kugelumlaufführung ME in der Tischführung und kann die höchste Vorschubkraft aller Linearmotortisch LT-Einheiten erzeugen ohne die Kompaktheit zu beeinträchtigen. Daher ist es der am besten für die Schwerlastpositionierung geeignete Linearmotortisch.

Vorteile

Hohe Vorschubkraft


Trotz seiner kompakten Form kann dieser Tisch eine Vorschubkraft von 900 N erzeugen. Diese Einheit eignet sich am Besten für die Schwerlastpositionierung.


Hohe Beschleunigung / Verzögerung


Tisch mit geringem Gewicht und hoher Vorschubkraft für hohe Beschleunigung / Verzögerung und schnelles Ansprechverhalten.

Luftkühlung

Kühlmechanismus zur Verminderung der Erhitzung des Motorteils kann optional angebracht werden. Er ermöglicht eine Reduzierung der Taktzeit und trägt zur Verbesserung der Produktionseffizienz bei.

Kühleffekt bei LT170H bei tats. Vorschubkraft von 120 N 1N=0,102kgf=0,2248lbs. II-282

1mm=0,03937 Zoll

-200

Produktbezeichnung und Ausführung ...

Seite II-284

Tabelle 1 Anwendung der Vorschubkraft und Geschwindigkeitssymbole

Modell	Größe	Ausführung der Vorschubkraft / Geschwindigkeit					
Modell	Große	G	V	Kein Symbol			
LT···CE	100	0	_	_			
LICE	150	0	_	_			
LT···LD	130	0	_	-			
בוייינט	170	0	0	_			
LT···H	170	_	_	0			

Form des Verfahrtisches

S : Standard
F : Mit Flansch

Geben Sie bei der Auswahl von S, im Abschnitt ③ "Bezeichnung der Abdeckung " "Kein Symbol" an.

Geben Sie bei der Auswahl von F, im Abschnitt ③ "Bezeichnung der Abdeckung" D an.

Wählen Sie eine Hublänge aus der Liste in Tabelle 2.

Tabelle 2 Hublänge

5 Hublänge

razene z maziange	
Modell und Größe	Hublänge mm
LT100CEG (S, F)	200, 400, 600, 800, 1 000
LT100CEG (S, F) ···/T2	230, 430, 630, 830
LT150CEG (S, F)	400, 600, 800, 1 000, 1 200
LT150CEG (S, F) ···/T2	350, 550, 750, 950
LT130LDGS	240, 720, 1 200, 1 680, 2 160, 2 640, 2 760
LT130LDGS···/T2	500, 980, 1 460, 1 940, 2 420, 2 540
LT130LDGF	240, 720, 1 200, 1 680
LT130LDGF···/T2	500, 980, 1 460
LT170LD (G, V) S	680, 1160, 1640, 2120, 2600, 2720
LT170LD (G, V) S/T2	420, 900, 1 380, 1 860, 2 340, 2 460
LT170LD (G, V)F	680, 1160, 1640
LT170LD (G, V) F/T2	420, 900, 1 380
LT170HS	650, 1130, 1610, 2090, 2570, 2670
LT170HS···T2	410, 890, 1 370, 1 850, 2 330, 2 430
LT170HF	650, 1130, 1610
LT170HF···T2	410, 890, 1 370

6 Auflösung 1: 0,1 μm 5: 0,5 μm 10: 1,0 μm 7 Art der Kühlung Kein Symbol: Luftselbstkühlung : Luftkühlung (gilt für LT···H) 8 Bezeichnung der Abdeckung Kein Symbol: Ohne Abdeckung (gilt für Standard-Verfahrtisch) : Mit Abdeckung (gilt für Verfahrtisch mit Flansch) 9 Sensorbezeichnung Kein Symbol: Ohne Sensor : Sensor (Limit und Vor-Referenzsensor), mit Sensorschiene (gilt für LT···CE) LT···LD and LT···H besitzen einen eingebauten Sensor. Bei der Eingabe von 🔮 "kein Symbol " angeben. 10 Anzahl Verfahrtische Kein Symbol: Tisch mit einem Wagen T2 : Tisch mit zwei Wagen 11 Ausführungsnummer : Anzahl der Ausführung 1

Die Anzahl dieser Ausführung ist auf 1 begrenzt.

11 Ausführungsnummer

Ausführungen.

Tabelle 3 LT···CE-Leistung

Modell und Größe Artikel		LT100CEG		LT150CEG				
Maximale Vorschubkraft (1) N		150 (120)		450 (350)				
Nennvorschubkraft N		15		60				
Maximale Nutzlast kg		15 (12)		45 (35)				
Auflösung μ m	0,1	0,5	1,0	0,1	0,5	1,0		
Maximale Geschwindigkeit (²) mm/s	700	2 000	2 000	700	2 000	2 000		
Wiederholgenauigkeit (3)	±0,5	±0,5	±1,0	±0,5	±0,5	±1,0		

Hinweise (1) Die Dauer des maximalen Vorschubkraft beträgt bis zu 1 Sekunde.

(2) Die Geschwindigkeit kann je nach max. Ausgangsfrequenz des verwendeten Controllers nicht erreicht werden.

(3) Wenn die Temperatur des Produkts konstant ist.

Anmerkung: Der Wert in () gilt, wenn der ADVA-Treiber verwendet wird.

Tabelle 4 LT···LD-Leistung

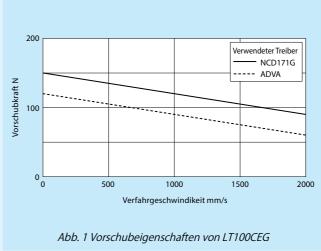
Modell und Größe Artikel	LT130LDG			LT170LDG			LT170LDV			
Maximale Vorschubkraft (1) N	150 (120)			450 (350)			190 (145)			
Nennvorschubkraft N	15			60			25			
Maximale Nutzlast kg		15 (12)		45 (35)			28 (20)			
Auflösung μ m	0,1	0,5	1,0	0,1	0,5	1,0	0,1	0,5	1,0	
Maximale Geschwindigkeit (²) mm/s	700	2 000	3 000	700	2 000	2 000	700	2 000	3 000	
Wiederholgenauigkeit (3)	±0,5	±0,5	±1,0	±0,5	±0,5	±1,0	±0,5	±0,5	±1,0	

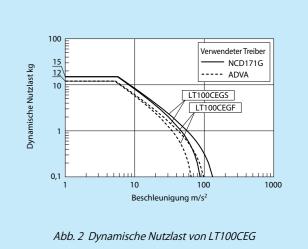
Hinweise (1) Die Dauer des maximalen Vorschubkraft beträgt bis zu 1 Sekunde.

(2) Die Geschwindigkeit kann je nach max. Ausgangsfrequenz des verwendeten Controllers nicht erreicht werden.

(3) Wenn die Temperatur des Produkts konstant ist.

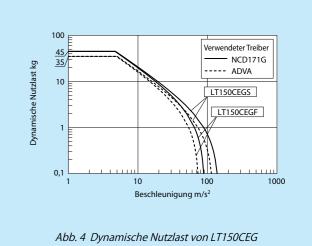
Anmerkung: Der Wert in () gilt, wenn der ADVA-Treiber verwendet wird.


Tabelle 5 LT···H-Leistung


Tabelle 3 LT···n-Le	Tabelle 5 LT···n-Leistung							
Artikel	Modell und Größe		LT170H					
Maximale Vorschubk	craft (1) N		900					
Nennvor-	Luftselbstkühlung Nennvor- N		120					
schubkraft (²)	Luftkühlung (³) N		150					
Maximale Nutzlast	kg	90						
Auflösung	μm	0,1	0,5	1,0				
Maximale Geschwindigkeit (4) (5) mm/s		700	1 500 (2 000)	1 500 (2 000)				
Wiederholgenauigke	eit (6) μm	±0,5	±0,5	±1,0				

Hinweise (1) Die Dauer des maximalen Vorschubkraft beträgt bis zu 1 Sekunde.


- (²) Wenn die Einheit auf einer Stahl-Unterkonstruktion fixiert ist und eine Umgebungstemperatur von 0 bis 25 ℃ vorliegt. Für mehr Informationen siehe Abb. 12 auf Seite II -288.
- (3) Dies gilt bei einem Luftdurchsatz von 30NL/min.
- (4) Bei Geschwindigkeiten über 1 500 mm/s bitte **IK** kontaktieren.
- (5) Die Geschwindigkeit kann je nach max. Ausgangsfrequenz des verwendeten Controllers nicht erreicht werden.
- (6) Wenn die Temperatur des Produkts konstant ist.


■ Vorschubeigenschaften von LT···CE

Anmerkung: Dies sind Werte, die auf Basis der Vorschubkraft eines Tisches mit einer auf 1000 mm/s eingestellten Verfahrgeschwindigkeit berechnet wurde.

Anmerkung: Dies sind Werte, die auf Basis der Vorschubkraft eines Tisches mit einer auf 1 000 mm/s eingestellten Verfahrgeschwindigkeit berechnet wurde.

■ Vorschubeigenschaften von LT···H

500

LT170H

1500

LT170H

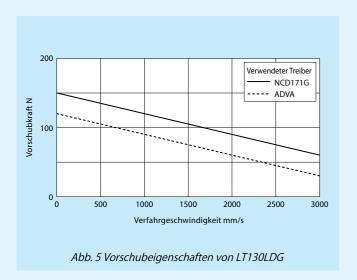
100

1000

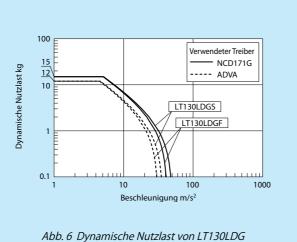
2000

1000

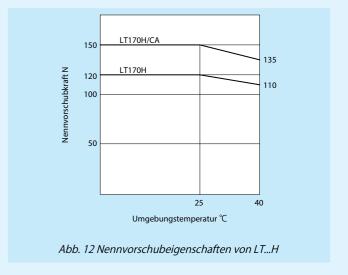
Verfahrgeschwindigkeit mm/s

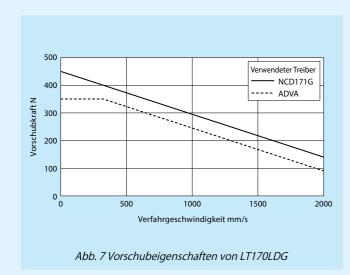

Abb. 11 Vorschubeigenschaften von LT…H

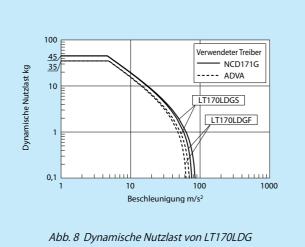
1000


600 400

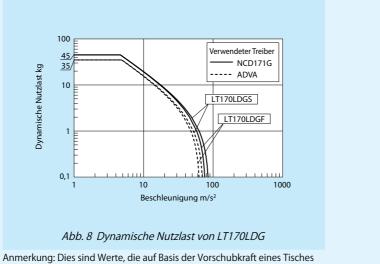
200


0,1



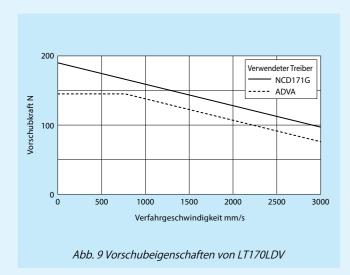

■ Vorschubeigenschaften von LT···LD

Anmerkung: Dies sind Werte, die auf Basis der Vorschubkraft eines Tisches mit einer auf 1 000 mm/s eingestellten Verfahrgeschwindigkeit



berechnet wurde.

berechnet wurde.



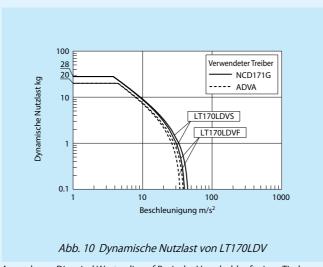
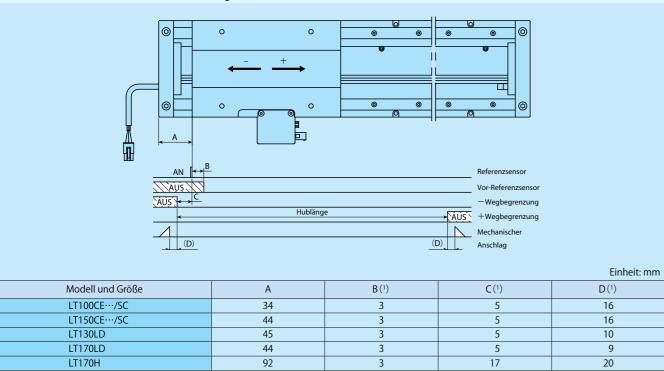

mit einer auf 1 000 mm/s eingestellten Verfahrgeschwindigkeit

Abb. 13 Dynamische Nutzlast von LT···H Anmerkung: Dies sind Werte, die auf Basis der Vorschubkraft eines Tisches mit einer auf 1 000 mm/s eingestellten Verfahrgeschwindigkeit berechnet wurde.

Beschleunigung m/s²

10



Anmerkung: Dies sind Werte, die auf Basis der Vorschubkraft eines Tisches mit einer auf 1 000 mm/s eingestellten Verfahrgeschwindigkeit berechnet wurde.

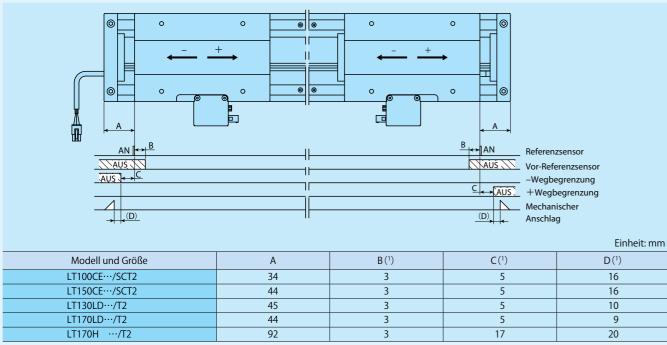

Ausführung mit Sensoren

Table 6.1 Sensor-Zeittafel für Tisch mit einem Wagen von LT···CE, LT···LD und LT···H

Hinweis (¹) Die jeweiligen Werte sind Referenzen und keine garantierten Werte. Für detaillierte Abmessungen, kontaktieren Sie bitte **IKII**. Anmerkung: Die Ausführungen der jeweiligen Sensoren finden Sie im Abschnitt Sensorausführung unter Allgemeine Erläuterung.

Table 6.2 Sensor-Zeittafel für Tisch mit zwei Wagen von LT···CE, LT···LD und LT···H

Hinweis (¹) Die jeweiligen Werte sind Referenzen und keine garantierten Werte. Für detaillierte Abmessungen, kontaktieren Sie bitte **IKO**. Anmerkung: Die Ausführungen der jeweiligen Sensoren finden Sie im Abschnitt Sensorausführung unter Allgemeine Erläuterung.

Systemkonfiguration.

Für den Linearmotortisch LT sind die zugehörigen Treiber ADVA and NCD171G verfügbar und die Systemkonfiguration unterscheidet sich je nach verwendetem Treiber. Für ADVA sind zwei Ausführungen verfügbar, Impulskettenausführung und die Ausführung mit Hochgeschwindigkeitsnetzwerk EtherCAT. Tabelle 7 führt die für die jeweiligen Treiber verwendbaren Tische auf. Tabelle 8 führt ein Beispiel für eine Produktbezeichnung für ADVA und Tabellen 9 und 11 zeigen die Systemkonfiguration jedes Treibers auf. Detaillierte Treiberausführungen finden Sie auf den Seiten II -347 bis II -350 und II -351. Bitte beachten Sie, dass der Treiber (MR-J4-10B), der mit SSCNET III /H kompatibel ist, wird je nach Verwendungsart vorbereitet. Falls erforderlich, bitte IKI kontaktieren.

Tabelle 7 Produktbezeichnung der Linearmotortische LT...CE, LT...LD, LT...H und anwendbare Treiber

Treiberausführung	Anwendbare Linearmotortisch-Modell		
ADVA	LT···CE、LT···LD、LT···H		
NCD171G	בויייכב, בוייינט, בויייוו		

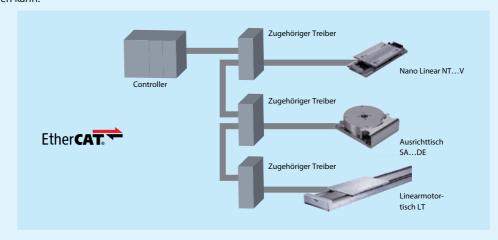
Tabelle 8 Produktbezeichnung für ADVA

ADVA	_	01NL	EC	/	LT100CEG
(1) Modell		(2)	(3)		(4)

(2) Stromstärke und Spannung/max. anwendbare Motorkapazität					
01NL	Einzelphase / Dreiphasen 200 V, 100 W (gilt für LT···CE, LT···LD)				
08NL	Einzelphase / Dreiphasen 200 V, 750 W (gilt für LT170H)				

(3) Befehlstyp	
Kein Symbol	Impulskettenbefehl
EC	EtherCAT

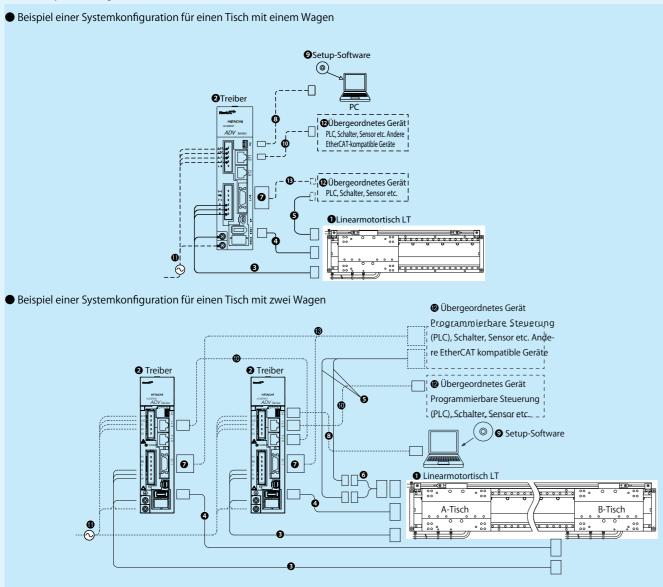
(4) Anwendbare Linearmotortisch-Modell					
LT100CEG	LT100CEG				
LT150CEG	LT150CEG				
LT130LDG	LT130LDG				
LT170LDG	LT170LDG (Ausführung mit großem Hub)				
LT170LDV	LT170LDV				
LITTOLDV	(Hochgeschwindigkeitsausführung)				
LT170H	LT170H				


Setup-Software

Zur Bedienung des Linearmotortisch LT durch ADVA ist eine Grundeinstellung der Treiberparameter erforderlich. Die Parametereinstellung des Treibers erfolgt mithilfe der Setup-Software. Sie kann auch zur Signalverstärkung und zur Überprüfung des Betriebsstatus verwendet werden. Die Setup-Software und das PC-Verbindungskabel sind nicht im Lieferumfang des Treibers enthalten. Diese können für mehrere Treiber verwendet werden, allerdings wird mindestens ein Set benötigt. Bitte bereiten Sie diese selbst vor oder geben Sie eine separate Bestellung gemäß Ihren Anforderungen auf.

Motion-Netzwerk

Der ADVA-Treiber für den Linearmotortisch LT unterstützt das Bewegungsnetzwerk EtherCAT.


Das Motion-Netzwerk erzielt eine höhere Leistung und eine höhere Genauigkeit der Geräte ohne Impulsfrequenzbeschränkung beim Impulskettenbefehl, Störeffekte beim Analogbefehl (Spannungsbefehl), Spannungsabfall aufgrund der Kabellänge und der Effekte von Temperaturunterschieden. Die Verdrahtung kann ebenfalls reduziert werden, sodass ein Synchronisationssystem mit mehr als einem Tisch leicht erzielt werden kann.

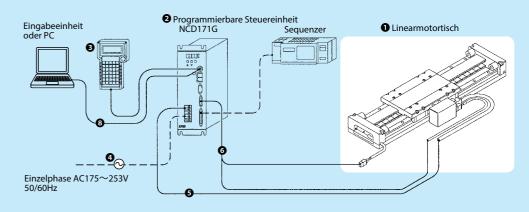
Modell	Eigenschaften
EtherCAT	Es handelt sich um ein auf Ethernet basierendes offenes Netzwerk-Kommunikationssystem, das von Beckhoff in Deutschland entwickelt wurde und eine Echtzeit-Steuerung ermöglicht. Dank der Hochgeschwindigkeitskommunikation und einer hochgenauen Synchronisierung zwischen den Knoten wird eine höhere Leistung und eine höhere Genauigkeit der Geräte erzielt. Außerdem können auf dem Markt erhältliche Ethernet-Kabel verwendet werden und verschiedene Verdrahtungsarten werden unterstützt.

1N=0,102kgf=0,2248lbs.

Tabelle 9 Systemkonfiguration für LT mit Treiber ADVA (...EC)

Nr.	Name	Produktbezeichnung
0	Linearmotortisch	Siehe Seiten II -294 bis II -303.
9	Treiber	Siehe Tabelle 8 zur Auswahl eines geeigneten Treibers für das Linearmotortisch-Modell.
6	Motorverlängerungskabel	TAE20V7-AM□□ (gilt für LT···CE, LT···LD)
Ð	Motorverlangerungskaber	TAE20V9-AM□□ (gilt für LT···H)
4	Encoder-Verlängerungskabel	TAE20V8-EC□□ (gilt für LT···CE, LT···LD)
•	Lifeoder-verlangerungskaber	TAE20W0-EC□□ (gilt für LT···H)
6	Sensorverlängerungskabel (3)	TAE10V8-LC□□
6	Endsensor-Verteilerkabel (0,1 m)	TAE20V2-BC
0	I/O-Anschluss	TAE20R5-CN (1) (anwendbar auf Treiber für Impulskettenbefehl)
v		TAE20V5-CN (2) (anwendbar auf Treiber für EtherCAT)
8	PC-Verbindungskabel	USB Mini-B-Kabel
•		Muss durch den Kunden bereitgestellt werden.
ø	Satura Coftwara	ProDriveNext
•	Setup-Software	Bitte laden Sie die Software von der offiziellen Homepage von Hitachi Industrial Equipment Systems Co., Ltd herunter.
0	Ethernet-Kabel	
•	Netzkabel	Muse durch den Kunden hersitensstellt worden
Ø	Übergeordnetes Gerät	- Muss durch den Kunden bereitgestellt werden.
®	Verbindungskabel I/O-Anschluss	

Hinweis (1) Der I/O-Anschluss TAE20R5-CN ist ein kombiniertes Produkt aus 10150-3000PE (Anschluss) und 10350-52F0-008 (Abdeckung) von Sumitomo 3M Limited.


(3) Signal-Linien #9 und #11 des Sensor-Verlängerungskabels für den B-Tisch werden nicht verwendet.

Anmerkung Die Längen des Motorverlängerungskabels, Verlängerungskabel für Encoder und Sensorverlängerungskabel wird in den Feldern 🗆 am Ende der Produktbezeichnung mit einer Länge von 3 bis 10 Meter in Schritten von 1 m angegeben.

Die Kabellänge wird mit zwei Ziffern abgegeben, selbst wenn die Länge unter 10 m beträgt. (Für 3 m: TAE20V7-AM03)

Table 10 Systemkonfiguration mit programmierbarer Steuereinheit NCD171G

• Beispiel einer Systemkonfiguration für einen Tisch mit einem Wagen

• Beispiel einer Systemkonfiguration für einen Tisch mit zwei Wagen

Programmierbare Steuereinheit Programmierbare Steuereinheit

Eingabeeinheit oder PC

Care PC

Nr.	Name	Produktbezeichnung					
INI.	Name	LT···CE	LT···CE/SC	LT···LD	LT···H		
0	Linearmotortisch		Siehe Seiten II	-294 bis II -303.			
9	Programmierbare Steuereinheit		NCD171G-L2620		NCD171G-L6820		
6	Eingabeeinheit		TAE1050-TB				
4	Netzkabel	Muss durch den Kunden bereitgestellt werden.					
6	Motorverlängerungskabel		TAE20C8-MC□□				
	Verlängerungskabel für Encoder (1)	TAE20S5-EC□□	-	_	_		
6	Verlängerungskabel für Encoder / Endsensor	— TAE20V0-EC□□			TAE20V1-EC□□		
0	Endsensor-Verteilerkabel (0,1 m)	TAE20V2-BC					
8	Kommunikationskabel (2,0 m)	TAE1098-RS					
Ð	Interaxialkabel (1,0 m)	TAE1099-LC					

Hinweis (1) Dies gilt für LT···CE ohne Sensor. Das im Konfigurationsbeispiel gezeigte Sensorverbindungskabel ist nicht inbegriffen.

Anmerkung: Die Längen des Motorverlängerungskabels, Verlängerungskabel für Encoder und Verlängerungskabel für Encoder / Endsensor wird in den Feldern um Ende der Produktbezeichnung mit einer Länge von 3 bis 10 Meter in Schritten von 1 m angegeben.

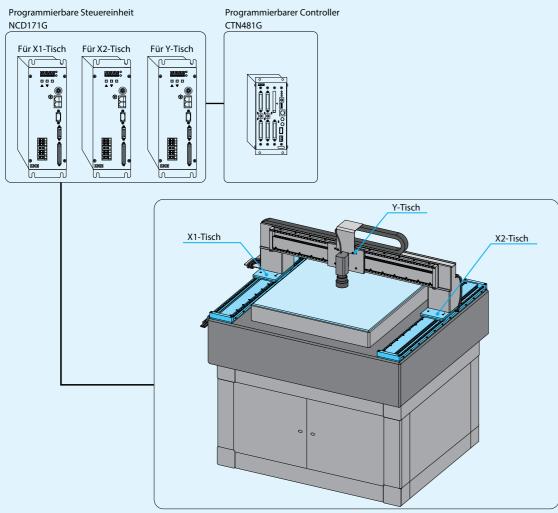
(Das Grenzsignalkabel wird um 1,5 m gekürzt.)

Die Kabellänge wird mit zwei Ziffern abgegeben, selbst wenn die Länge unter 10 m beträgt. (Für 3m: TAE20C8-MC03)

⁽²⁾ Der I/O-Anschluss TAE20V5-CN ist ein kombiniertes Produkt aus 10120-3000PE (Anschluss) und 10320-52F0-008 (Abdeckung) von Sumitomo 3M Limited.

Parallelbetrieb mit zwei Achsen

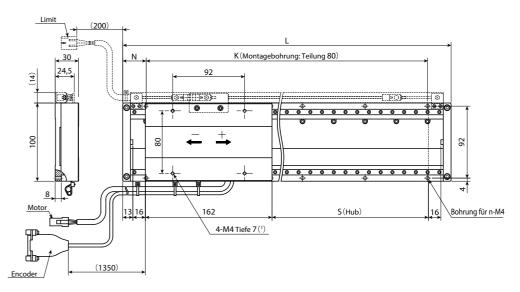
Das Einbauen einer steifen Kombination aus zwei parallel angeordneten Linearmotortischen LT ermöglicht die parallele Bedienung durch


Im Vergleich zu herkömmlichen mitgeführten oder angetriebenen Einzelachsen-Ausführungen, ermöglicht der Parallelbetrieb mit zwei Achsen einen stabilisierten Positioniermechanismus mit minimaler Temperaturverspannung. Dadurch wird die Verzögerung des rechten bzw. linken Antriebs minimiert. Dies eignet sich am Besten für Messmaschinen, die einen großflächigen Arbeitsbereich überspannen, wie zum Beispiel eine Flat-Panel-Display-Fertigungsmaschine.

Der Parallelbetrieb mit zwei Achsen wird je nach Verwendungszweck hergestellt. Für Details solcher Produktspezifikationen, bitte **IKO** kontaktieren.

Vergleich der Eigenschaften der Antriebsmethode

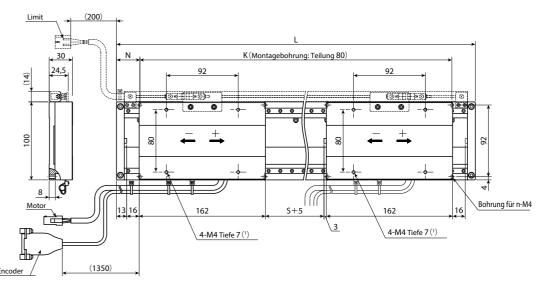
Parallelbetrieb mit zwei Achsen	Mitgeführte und angetriebene Einzelachsen-Methode
 Diese wird durch zwei Achsen angetrieben und kann eine große Vorschubkraft erzeugen. Das Mitführen der rechten und linken Tische ermöglicht einen Positioniermechanismus mit minimierter Tischverzögerung und Temperaturverspannung. Tischverzögerung und Temperaturverspannung werden minimiert, wodurch eine hohe Positioniergenauigkeit erzielt werden kann. Im Vergleich zum Zwei-Achsen-Synchronisation-Kontrollsystem können Kosten eingespart werden. 	 Diese wird durch eine einzelne Achse angetrieben und kann keine große Vorschubkraft erzeugen. Das Mitführen von nur einer Achse kann zu Verzögerungen des Tisches auf der Antriebsseite und Temperaturverspannung führen. Häufig treten Verzögerungen des Tisches auf der Antriebsseite und Temperaturverspannungen auf, weshalb die Positioniergenauigkeit beeinträchtigt wird .


Beispiel einer Systemkonfiguration mit programmierbarer Steuereinheit NCD171G

Dieses Konfigurationsbeispiel ist eine Systemkonfiguration mit Parallelbetrieb der X1 und X2-Tische mit **IKI**programmierbaren Controller CTN481G als übergeordneten Controller.

LT100CEGS Tisch mit einem Wagen

Einheit: mm


	Hublänge	Gesamt-	Montagebohrunger		es Tisches	Gesamtmasse des	Masse des
Produktbezeichnung	S (2)	länge L	N	К	n	Tisches kg	Verfahrtischs kg
LT100CEGS- 200	200	420	50	320	10	4,9	
LT100CEGS- 400	400	620	30	560	16	6,9	
LT100CEGS- 600	600	820	50	720	20	9,0	0,58
LT100CEGS- 800	800	1 020	30	960	26	11,1	
LT100CEGS-1000	1 000	1 220	50	1 120	30	13,1	

Hinweise (1) Wenn die Befestigungsschraube zu stark angezogen wird, kann die Laufleistung des Verfahrtischs beeinträchtigt werden, weshalb nie eine Schraube eingeführt werden sollte, die länger als die Durchgangsbohrung ist.

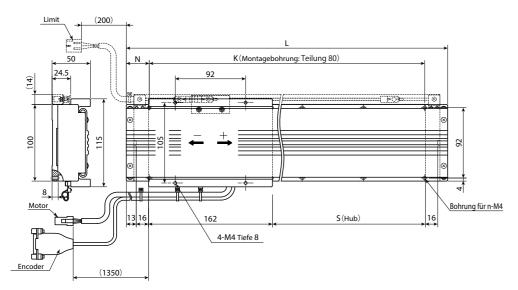
(2) Für andere Hublängen, bitte **IK** kontaktieren.

Anmerkung: Die gestrichelten Linien in den Abbildungen geben die Ausführung mit Sensoren / SC an.

LT100CEGS/T2 Positioniertisch mit 2 Wagen

Einheit: mm

	Hublänge	Gesamtlänge	Montagebohrungen des Tisches		Gesamtmasse des	Masse des	
Produktbezeichnung	S (2)	L	N	К	n	Tisches kg	Verfahrtischs kg
LT100CEGS-230/T2	230	620	30	560	16	7,5	
LT100CEGS-430/T2	430	820	50	720	20	9,6	0.50
LT100CEGS-630/T2	630	1 020	30	960	26	11,7	0,58
LT100CEGS-830/T2	830	1 220	50	1 120	30	13,7	

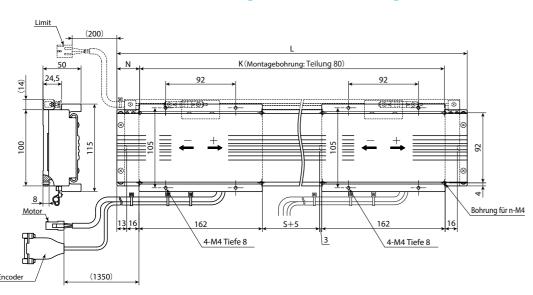

Hinweise (1) Wenn die Befestigungsschraube zu stark angezogen wird, kann die Laufleistung des Verfahrtischs beeinträchtigt werden, weshalb nie eine Schraube eingeführt werden sollte, die länger als die Durchgangsbohrung ist.

(2) Für andere Hublängen, bitte **IK** kontaktieren.

Anmerkung: Die gestrichelten Linien in den Abbildungen geben die Ausführung mit Sensoren / SC an.

IIC Linearmotortisch LT

LT100CEGF/D Tisch mit 1 Wagen und Abdeckung


Einheit: mm

Produktbezeichnung	Hublänge S (¹)	Gesamt- länge L	Montage N	oohrungen d K	es Tisches n	Gesamtmasse des Tisches kg	Masse des Verfahrtischs kg
LT100CEGF- 200/D	200	420	50	320	10	5,6	
LT100CEGF- 400/D	400	620	30	560	16	7,8	
LT100CEGF- 600/D	600	820	50	720	20	10,0	0,93
LT100CEGF- 800/D	800	1 020	30	960	26	12,2	
LT100CEGF-1000/D	1 000	1 220	50	1 120	30	14,4	

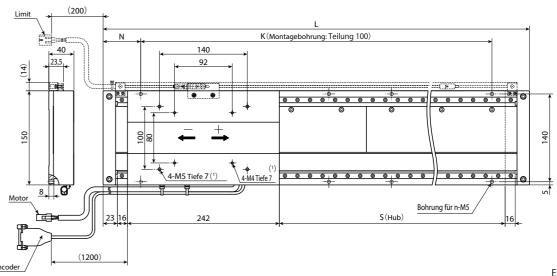
Hinweis (1) Für andere Hublängen, bitte **IK** kontaktieren.

Anmerkung: Die gestrichelten Linien in den Abbildungen geben die Ausführung mit Sensoren / SC an.

LT100CEGF/DT2 Positioniertisch mit 2 Wagen und Abdeckung

Einheit: mm

1N=0,102kgf=0,2248lbs.

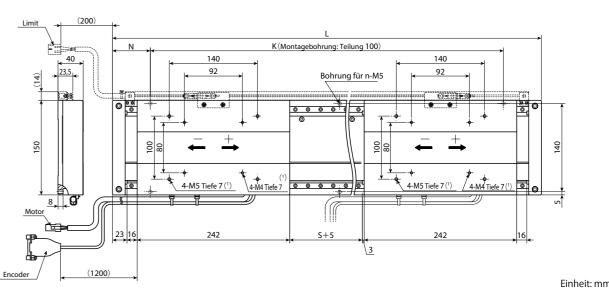

1mm=0,03937 Zoll

Produktbezeichnung	Hublänge S (¹)	Gesamt- länge L	Montagel N	bohrungen de K	es Tisches n	Gesamtmasse des Tisches kg	Masse des Verfahrtischs kg
LT100CEGF-230/DT2	230	620	30	560	16	8,7	
LT100CEGF-430/DT2	430	820	50	720	20	10,9	0.03
LT100CEGF-630/DT2	630	1 020	30	960	26	13,2	0,93
LT100CEGF-830/DT2	830	1 220	50	1 120	30	15,4	

Hinweis (1) Für andere Hublängen, bitte **IK** kontaktieren.

Anmerkung: Die gestrichelten Linien in den Abbildungen geben die Ausführung mit Sensoren / SC an.

LT150CEGS Tisch mit einem Wagen


Encoder /							Einheit: mm
Produktbezeichnung	Hublänge S (²)	Gesamtlänge L	Montagel N	oohrungen d K	es Tisches n	Gesamtmasse des Tisches kg	Masse des Verfahrtischs kg
LT150CEGS- 400	400	720	60	600	14	12,4	
LT150CEGS- 600	600	920	60	800	18	15,5	
LT150CEGS- 800	800	1 120	60	1 000	22	18,6	1,5
LT150CEGS-1000	1 000	1 320	60	1 200	26	21,6	
LT150CEGS-1200	1 200	1 520	60	1 400	30	24.7	

Hinweise (1) Wenn die Befestigungsschraube zu stark angezogen wird, kann die Laufleistung des Verfahrtischs beeinträchtigt werden, weshalb nie eine Schraube eingeführt werden sollte, die länger als die Durchgangsbohrung ist.

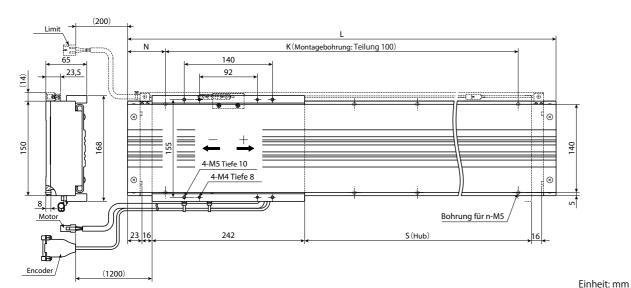
(2) Für andere Hublängen, bitte **IK** kontaktieren.

Anmerkung: Die gestrichelten Linien in den Abbildungen geben die Ausführung mit Sensoren / SC an.

LT150CEGS/T2 Positioniertisch mit 2 Wagen

							2
Produktbezeichnung	Hublänge S (2)	Gesamtlänge L	Montage N	bohrungen d K	es Tisches n	Gesamtmasse des Tisches kg	Masse des Verfahrtischs kg
LT150CEGS-350/T2	350	920	60	800	18	17,0	9
LT150CEGS-550/T2	550	1 120	60	1 000	22	20,1	1 5
LT150CEGS-750/T2	750	1 320	60	1 200	26	23,1	1,5
LT150CEGS-950/T2	950	1 520	60	1 400	30	26,2	

Hinweise (1) Wenn die Befestigungsschraube zu stark angezogen wird, kann die Laufleistung des Verfahrtischs beeinträchtigt werden, weshalb nie eine Schraube eingeführt werden sollte, die länger als die Durchgangsbohrung ist.

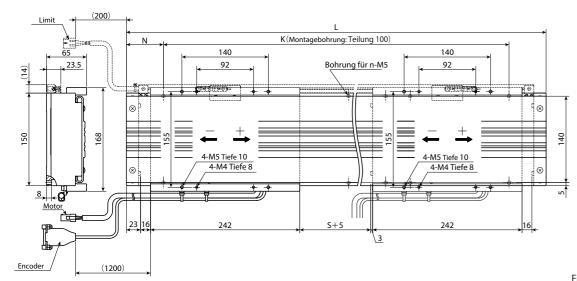

(2) Für andere Hublängen, bitte **IK** kontaktieren.

Anmerkung: Die gestrichelten Linien in den Abbildungen geben die Ausführung mit Sensoren / SC an.

1N=0,102kgf=0,2248lbs.

IIC Linearmotortisch LT

LT150CEGF/D Tisch mit 1 Wagen und Abdeckung

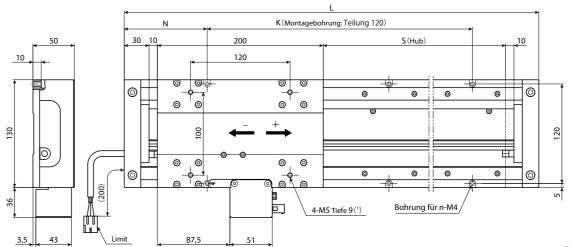


	Hublänge	Gesamtlänge	Montagel	oohrungen d	es Tisches	Gesamtmasse des	Masse des
Produktbezeichnung	S(1)	L	N	К	n	Tisches kg	Verfahrtischs kg
LT150CEGF- 400/D	400	720	60	600	14	14,8	
LT150CEGF- 600/D	600	920	60	800	18	18,1	
LT150CEGF- 800/D	800	1 120	60	1 000	22	21,5	2,4
LT150CEGF-1000/D	1 000	1 320	60	1 200	26	24,8	
LT150CEGF-1200/D	1 200	1 520	60	1 400	30	28,2	

Hinweis (¹) Für andere Hublängen, bitte **IK** kontaktieren.

Anmerkung: Die gestrichelten Linien in den Abbildungen geben die Ausführung mit Sensoren / SC an.

LT150CEGF/DT2 Positioniertisch mit 2 Wagen und Abdeckung

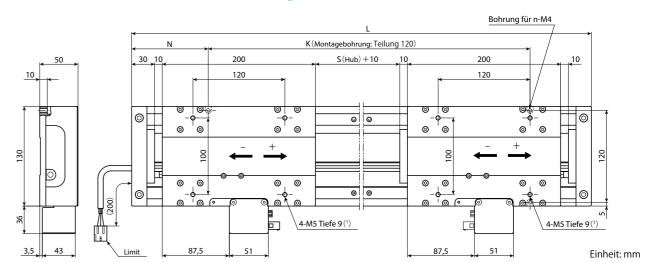


	→						Einheit: mm
	Hublänge	Gesamtlänge	Montage	oohrungen d	es Tisches	Gesamtmasse des	Masse des
Produktbezeichnung	S(1)	L	N	K	n	Tisches kg	Verfahrtischs kg
LT150CEGF-350/DT2	350	920	60	800	18	20,5	
LT150CEGF-550/DT2	550	1120	60	1000	22	23,9	2.4
LT150CEGF-750/DT2	750	1320	60	1200	26	27,3	2,4
LT150CEGF-950/DT2	950	1520	60	1400	30	30,6	

Hinweis (1) Für andere Hublängen, bitte **IK** kontaktieren.

Anmerkung: Die gestrichelten Linien in den Abbildungen geben die Ausführung mit Sensoren / SC an.

LT130LDGS Tisch mit einem Wagen


heit:	

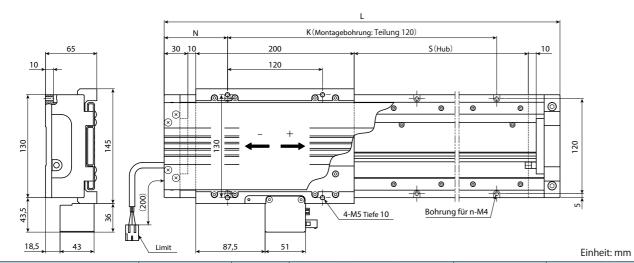
Produktbezeichnung	Hublänge S (²)	Gesamtlänge L	Montagel N	oohrungen d K	es Tisches n	Gesamtmasse des Tisches kg	Masse des Verfahrtischs kg
LT130LDGS- 240	240	520	80	360	8	7,6	
LT130LDGS- 720	720	1 000	80	840	16	13,5	
LT130LDGS-1200	1 200	1 480	80	1320	24	19,4	
LT130LDGS-1680	1 680	1 960	80	1800	32	25,3	1,7
LT130LDGS-2160	2 160	2 440	80	2280	40	31,2	
LT130LDGS-2640	2 640	2 920	80	2760	48	37,1	
LT130LDGS-2760	2 760	3 040	80	2880	50	38,6	

Hinweise (1) Wenn die Befestigungsschraube zu stark angezogen wird, kann die Laufleistung des Verfahrtischs beeinträchtigt werden, weshalb nie eine Schraube eingeführt werden sollte, die länger als die Durchgangsbohrung ist.

(2) Für andere Hublängen, bitte **IK** kontaktieren.

LT130LDGS/T2 Positioniertisch mit 2 Wagen

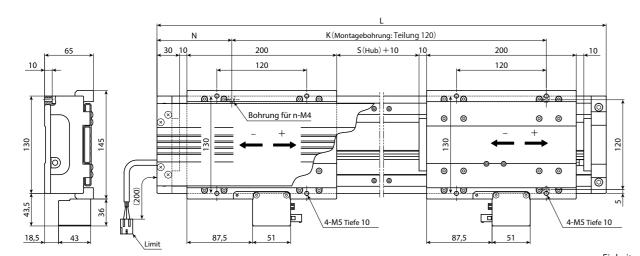
	Hublänge	Gesamtlänge	Montagel	oohrungen d	es Tisches	Gesamtmasse des	Masse des	
Produktbezeichnung	S (2)	L	N	K	n	Tisches kg	Verfahrtischs kg	
LT130LDGS- 500/T2	500	1 000	80	840	16	15,2		
LT130LDGS- 980/T2	980	1 480	80	1 320	24	21,1		
LT130LDGS-1460/T2	1 460	1 960	80	1 800	32	27,0	1,7	
LT130LDGS-1940/T2	1 940	2 440	80	2 280	40	32,9	1,/	
LT130LDGS-2420/T2	2 420	2 920	80	2 760	48	38,8		
LT130LDGS-2540/T2	2 540	3 040	80	2 880	50	40,3		


Hinweise (1) Wenn die Befestigungsschraube zu stark angezogen wird, kann die Laufleistung des Verfahrtischs beeinträchtigt werden, weshalb nie eine Schraube eingeführt werden sollte, die länger als die Durchgangsbohrung ist.

(2) Für andere Hublängen, bitte **IK** kontaktieren.

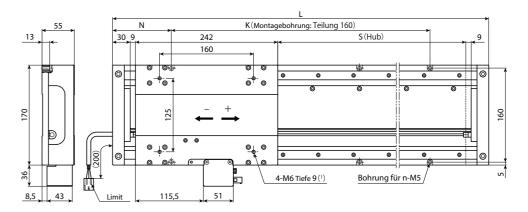
1N=0,102kgf=0,2248lbs. 1mm=0,03937 Zoll

Linearmotortisch LT


LT130LDGF/D Positioniertisch mit 1 Wagen und Abdeckung

	Hublänge	Gesamtlänge	Montagel	oohrungen d	es Tisches	Gesamtmasse des	Masse des
Produktbezeichnung	S(1)	L	N	К	n	Tisches kg	Verfahrtischs kg
LT130LDGF- 240/D	240	520	80	360	8	8,3	
LT130LDGF- 720/D	720	1 000	80	840	16	14,6	2,0
LT130LDGF-1200/D	1 200	1 480	80	1 320	24	20,9	2,0
LT130LDGF-1680/D	1 680	1 960	80	1 800	32	27,2	

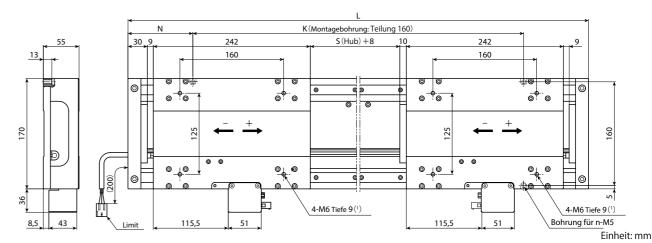
Hinweis (1) Für andere Hublängen, bitte **IK** kontaktieren.


LT130LDGF/DT2 Positioniertisch mit 2 Wagen und Abdeckung

							Einneit: mm
	Hublänge S (1)	Gesamtlänge	Montagel	oohrungen d	es Tisches	Gesamtmasse des	Masse des
Produktbezeichnung		L	NI		_	Tisches	Verfahrtischs
			IN	N.	n	kg	kg
LT130LDGF- 500/DT2	500	1 000	80	840	16	16,6	
LT130LDGF- 980/DT2	980	1 480	80	1 320	24	22,8	2,0
LT130LDGF-1460/DT2	1 460	1 960	80	1 800	32	29,1	

Hinweis (¹) Für andere Hublängen, bitte **IK** kontaktieren.

LT170LDGS Tisch mit einem Wagen / Ausführung mit großem Hub


Einheit: mm

	Hublänge	Gesamtlänge	Montagel	bohrungen d	es Tisches	Gesamtmasse des	Masse des
Produktbezeichnung	S (2)	L	N	K	n	Tisches kg	Verfahrtischs kg
LT170LDGS- 680 LT170LDVS- 680	680	1 000	100	800	12	22,6	
LT170LDGS-1160 LT170LDVS-1160	1 160	1 480	100	1 280	18	32,7	
LT170LDGS-1640 LT170LDVS-1640	1 640	1 960	100	1 760	24	42,7	2,5
LT170LDGS-2120 LT170LDVS-2120	2 120	2 440	100	2 240	30	52,8	2,3
LT170LDGS-2600 LT170LDVS-2600	2 600	2 920	100	2 720	36	62,9	
LT170LDGS-2720 LT170LDVS-2720	2 720	3 040	80	2 880	38	65,4	

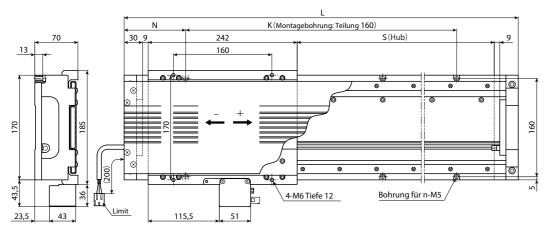
Hinweise (1) Wenn die Befestigungsschraube zu stark angezogen wird, kann die Laufleistung des Verfahrtischs beeinträchtigt werden, weshalb nie eine Schraube eingeführt werden sollte, die länger als die Durchgangsbohrung ist.

(2) Für andere Hublängen, bitte **IK** kontaktieren.

LT170LDGS/T2 Tisch mit zwei Wagen / Ausführung mit großem Hub

	Hublänge Gesamtlänge		Montagel	bohrungen d	es Tisches	Gesamtmasse des	Masse des
Produktbezeichnung	S (2)	L	N	K	n	Tisches kg	Verfahrtischs kg
LT170LDGS- 420/T2 LT170LDVS- 420/T2	420	1 000	100	800	12	25,1	
LT170LDGS- 900/T2 LT170LDVS- 900/T2	900	1 480	100	1 280	18	35,2	
LT170LDGS-1380/T2 LT170LDVS-1380/T2	1 380	1 960	100	1 760	24	45,2	2,5
LT170LDGS-1860/T2 LT170LDVS-1860/T2	1 860	2 440	100	2 240	30	55,3	2,3
LT170LDGS-2340/T2 LT170LDVS-2340/T2	2 340	2 920	100	2 720	36	65,4	
LT170LDGS-2460/T2 LT170LDVS-2460/T2	2 460	3 040	80	2 880	38	67,9	

Hinweise (1) Wenn die Befestigungsschraube zu stark angezogen wird, kann die Laufleistung des Verfahrtischs beeinträchtigt werden, weshalb nie eine Schraube eingeführt werden sollte, die länger als die Durchgangsbohrung ist.

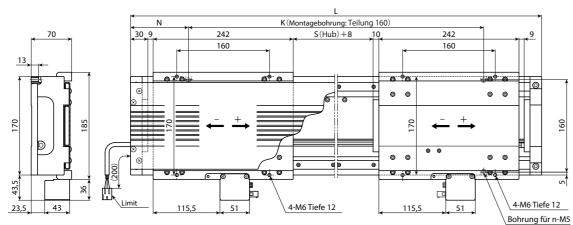

(2) Für andere Hublängen, bitte **IK** kontaktieren.

1N=0,102kgf=0,2248lbs. 1mm=0,03937 Zoll

11-300

Linearmotortisch LT

LT170LDGF/D Tisch mit einem Wagen mit Abdeckung / Ausführung mit großem Hub

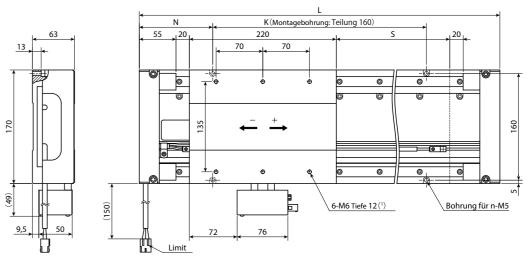


Einheit: mm

Produktbezeichnung	Hublänge S (¹)	Gesamtlänge L	Montagebohrungen des Tisches N K n		Gesamtmasse des Tisches kg	Masse des Verfahrtischs kg	
LT170LDGF- 680/D LT170LDVF- 680/D	680	1 000	100	800	12	24,0	
LT170LDGF-1160/D LT170LDVF-1160/D	1 160	1 480	100	1 280	18	34,6	2,8
LT170LDGF-1640/D LT170LDVF-1640/D	1 640	1 960	100	1 760	24	45,2	

Hinweis (1) Für andere Hublängen, bitte **IK** kontaktieren.

LT170LDGF/DT2 Tisch mit zwei Wagen mit Abdeckung / Ausführung mit großem Hub

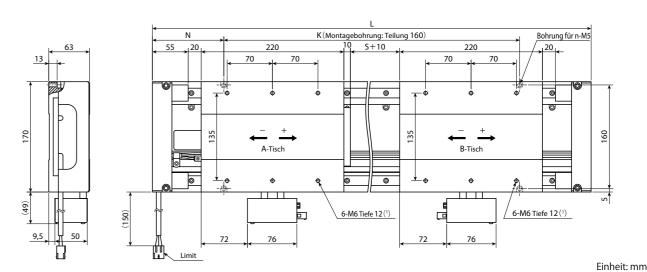


Einheit: mm

	Produktbezeichnung	Hublänge	Gesamtlänge	Montagel	oohrungen d	es Tisches	Gesamtmasse des	Masse des
		S(1)	L	N	К	n	Tisches kg	Verfahrtischs kg
	LT170LDGF- 420/DT2 LT170LDVF- 420/DT2	420	1 000	100	800	12	26,9	
	LT170LDGF- 900/DT2 LT170LDVF- 900/DT2	900	1 480	100	1 280	18	37,5	2,8
	LT170LDGF-1380/DT2 LT170LDVF-1380/DT2	1 380	1 960	100	1 760	24	48,0	

Hinweis (1) Für andere Hublängen, bitte **IK** kontaktieren.

LT170HS Tisch mit einem Wagen


Einheit: mm

	Hublänge	Gesamtlänge	Montagel	bohrungen de	es Tisches	Gesamtmasse des	Masse des
Produktbezeichnung	S (2)	L	N	К	n	Tisches kg	Verfahrtischs kg
LT170HS- 650	650	1 020	110	800	12	25,1	
LT170HS-1130	1 130	1 500	110	1 280	18	34,9	
LT170HS-1610	1 610	1 980	110	1 760	24	44,6	4,0
LT170HS-2090	2 090	2 460	110	2 240	30	54,4	4,0
LT170HS-2570	2 570	2 940	110	2 720	36	64,1	
LT170HS-2670	2 670	3 040	80	2 880	38	66,4	

Hinweise (1) Wenn die Befestigungsschraube zu stark angezogen wird, kann die Laufleistung des Verfahrtischs beeinträchtigt werden, weshalb nie eine Schraube eingeführt werden sollte, die länger als die Durchgangsbohrung ist.

(2) Für andere Hublängen, bitte **IK** kontaktieren.

LT170CEGS/T2 Positioniertisch mit 2 Wagen

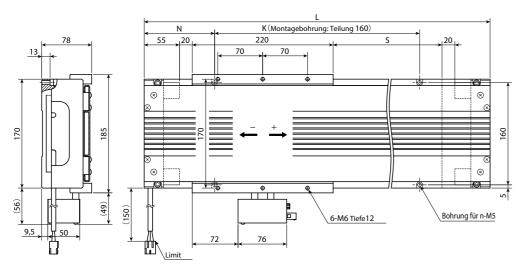
Produktbezeichnung	Hublänge	Gesamtlänge	Montagel	bohrungen d	es Tisches	Gesamtmasse des	Masse des
	S (2)	L	N	K	n	Tisches kg	Verfahrtischs kg
LT170HS- 410/T2	410	1 020	110	800	12	29,1	
LT170HS- 890/T2	890	1 500	110	1280	18	38,9	
LT170HS-1370/T2	1 370	1 980	110	1760	24	48,6	4.0
LT170HS-1850/T2	1 850	2 460	110	2240	30	58,4	4,0
LT170HS-2330/T2	2 330	2 940	110	2720	36	68.1	

Hinweise (1) Wenn die Befestigungsschraube zu stark angezogen wird, kann die Laufleistung des Verfahrtischs beeinträchtigt werden, weshalb nie eine Schraube eingeführt werden sollte, die länger als die Durchgangsbohrung ist.

(2) Für andere Hublängen, bitte **IK** kontaktieren.

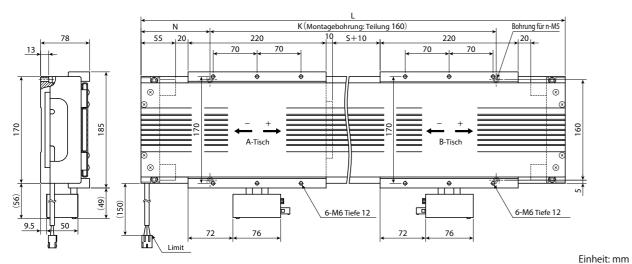
2 430

LT170HS-2430/T2

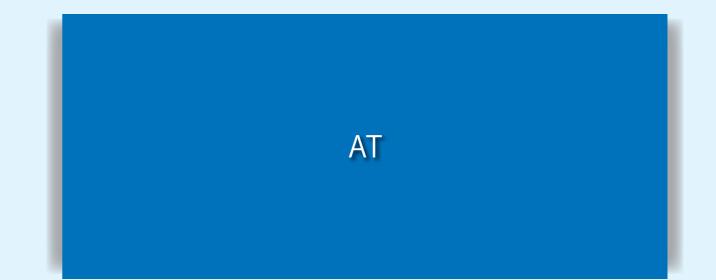

1N=0,102kgf=0,2248lbs. 1mm=0,03937 Zoll

II-302

70,4


LT170HF/D Positioniertisch mit 1 Wagen und Abdeckung

	Hublänge	Gesamtlänge	Montage	bohrungen d	Gesamtmasse des	Masse des	
Produktbezeichnung	Produktbezeichnung S(1)	L	N	К	n	Tisches kg	Verfahrtischs kg
LT170HF- 650/D	650	1 020	110	800	12	25,5	
LT170HF-1130/D	1 130	1 500	110	1 280	18	35,2	4,4
LT170HF-1610/D	1 610	1 980	110	1 760	24	45,0	


Hinweis (1) Für andere Hublängen, bitte **IK** kontaktieren.

LT170HF/DT2 Positioniertisch mit 2 Wagen und Abdeckung

Produktbezeichnung	Hublänge	Gesamtlänge	Montagebohrungen des Tisches			Gesamtmasse des	Masse des
	S (1)	L	N	К	n	Tisches kg	Verfahrtischs kg
LT170HF- 410/DT2	410	1 020	110	800	12	29,9	
LT170HF- 890/DT2	890	1 500	110	1 280	18	39,6	4,4
LT170HF-1370/DT2	1 370	1 980	110	1 760	24	49,4	

Hinweis (1) Für andere Hublängen, bitte **IK** kontaktieren.

Einheit: mm

Tisch

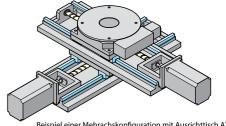
Gestell

indem ein Kreuzrollenlager integriert ist.

Die Verwendung eines Kreuzrollenlagers, das in der Lage ist, eine große Steifigkeit in jede Richtung auszuüben, ermöglicht ein flaches Profil, eine hohe Steifigkeit und eine hohe Präzision.

Rotativer Positioniertisch für Umwandlung von Linearbewegung und Drehbewegung

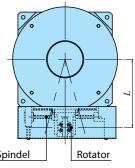
Dieser Positioniertisch ermöglicht eine präzise Winkelkorrektur durch Umwandlung von Linearbewegung in Drehbewegung mithilfe eines Rotator-Mechanismus aus der Kombination von Kugelumlaufführung und Spindeln. Tisch und Gestell wurden aus hochsteifem Stahl gefertigt,


● Wiederholgenauigkeit von ±1 sek

Ein Rotator für die Umwandlung von Linear- zu Drehbewegung wird durch eine Kombination aus Kugelumlaufführung L und Präzisionsspindel mit großer Genauigkeit geführt, wodurch die Wiederholgenauigkeit von ±1 sek ermöglicht wird.

Vorteile

Verfügbar als Mehrachsausrichttisch


Durch das Platzieren dierser Einheit auf dem Führungsschlitten des Präzisionspositioniertisch LH ermöglicht die Konfiguration eines flachen XY- θ -Mehrachs-Positioniermechanismus.

Antriebsmechanismus des Ausrichttisch AT

Der Ausrichttisch AT wird durch einen Rotator angetrieben, der mit der Außenseite des Tisches verbunden ist und durch eine Spindel in linearer Richtung angetrieben wird. Um die Distanz L und den Winkel zur Tischmitte konstant zu halten, erfolgt der Ausgleich über eine Linear- und Drehbewegung. Folglich bleibt die Rotationsgeschwindigkeit, selbst der Rotator mit einer gewissen Neigung bewegt wird. Folglich bleibt die Rotationsgeschwindigkeit, selbst wenn der Tisch mit einer konstanten Geschwindigkeit bewegt wird, nie konstant.

Entfernung vom Zentrum des Tisches	Einheit: mm	
Produktbezeichnung	L	
AT120	100	
AT200	130	
AT300	186	

Wichtige Produktbeschreibungen

Antriebsmethode	Präzisonsspindel
Kugelumlaufführung und	Kugelumlaufführung
-Lager	Kreuzrollenlager
Eingebaute Schmierplatte	Nicht eingebaut
Tisch- und Gestellmaterial	Hochfester Stahl
Sensor	Standardmäßig enthalten

Genauigkeit

	Einheit: sek
Wiederholgenauigkeit	±1
Positioniergenauigkeit	-
Leerlauf	-
Parallelität der Tischbewegung A	-
Parallelität der Tischbewegung B	-
Verwindungsgenauigkeit	-
Geradheit	-
Umkehrspiel	-

Variation

Form	Modell und Größe	Tischdurchmesser (mm)	Bedienwinkelspanne (Grad)
	AT120	120	_
	AT200	200	± 5
	AT300	300	±10

Beispiel einer Produktbezeichnung AT 120 AT701 Modell Seite II-308 Bezeichnung d. Motorflansches Seite II-308

Produktbezeichnung und Ausführung ...

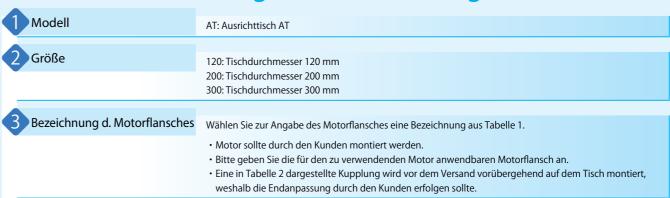


Tabelle 1 Anwendung des Motorflansches

Zu verwendende Motormodelle						Motorf	lansch
Art	Hersteller	Baureihe	Modell	Nennleistung W	größe mm	AT120 AT200	AT300
	VACVANVA		SGMJV-A5A	50		AT701	_
	YASKAWA ELECTRIC	Σ-V	SGMAV-A5A	30	□40	AT701	_
	CORPORATION	Z-V	SGMJV-01A	100	□ 4 0	AT701	AT702
CORPORATION		SGMAV-01A	100		AT701	AT702	
			HF-MP053, HG-MR053	50		AT701	_
	Mitsubishi Electric	J3, J4	HF-KP053, HG-KR053	30	□40	AT701	_
AC-Servo-	Corporation	J3, J 4	HF-MP13, HG-MR13	100	□40	AT701	AT702
motor		HF-KP13, HG-KR13	100		AT701	AT702	
motor		MSMD5A	50		AT703	_	
	Damasania Camasantian	MINAS A5	MSME5A	30	□38	AT703	_
	Panasonic Corporation		MSMD01	100		AT703	AT704
			MSME01	100		AT703	AT704
	Hitachi Industrial		ADMA-R5L	50		AT701	-
	Equipment Systems Co., Ltd	AD	ADMA-01L	100	□40	AT701	AT702
			AR46		□42	AT705	_
			AR66		□60	_	AT706
		α Schritt	AR69		□60	_	AT706
Schritt-	ORIENTAL MOTOR	a schritt	AS46		□42	AT707	_
motor	Co., Ltd.		AS66		□60	_	AT708
			AS69	□60	_	AT708	
			RK54 • CRK54		□42	AT707	_
		CRK	RK56 • CRK56	(1)	□60	_	AT708

Hinweis (1) Gilt für den Außendurchmesser Ø8 der Motorwelle.

 $Anmerkung: Detaillierte\ Motorspezifikationen\ finden\ Sie\ in\ dem\ jeweiligen\ Katalog\ des\ Herstellers.$

Tabelle 2 Kupplungsmodelle

abelle 2 Kuppiungsmodelle							
Motor- flansch	Kupplungsmodelle	Hersteller	Trägheitsmoment der Kupplung J _c ×10 ^{-s} kg • m ²				
AT701	MSTS-16-5×8	Nabeya Bi-tech Kaisha	0,084				
AT702	UA-25C-8×8	Sakai Manufacturing Co., Ltd	0,290				
AT703	MSTS-16-5×8	Nabeya Bi-tech Kaisha	0,084				
AT704	UA-25C-8×8	Sakai Manufacturing Co., Ltd	0,290				
AT705	MSTS-16-5×6	Nabeya Bi-tech Kaisha	0,084				
AT706	MSTS-25C-8×10	Nabeya Bi-tech Kaisha	0,71				
AT707	MSTS-16-5×5	Nabeya Bi-tech Kaisha	0,084				
AT708	MSTS-25C-8×8	Nabeya Bi-tech Kaisha	0,71				

Anmerkung: Detaillierte Angaben zu den Kupplungen finden Sie im jeweiligen Katalog des Herstellers.

1N=0,102kgf=0,2248lbs.

Ausführungen.

Tabelle 3 Ausführungen der Spindel

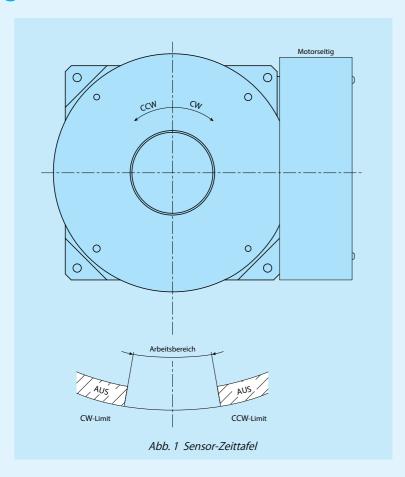
Einheit: mm

	3					
Modell und Größe	Schaftdurchmesser	Gesamtlänge				
AT120	6	103,5				
AT200	6	103,5				
AT300	10	183				

Table 4 Ausführungen

Artikel Größe	Spindel- steigung mm	Rotatorauflösung μ m	Bedien- winkelbereich Grad	Wiederhol- genauigkeit sek.	Trägheitsmoment des Tisches J _T ×10 ⁻⁵ kg•m²	Anlauf- moment T _s N•m		
AT120	1	1(1)	+ 5	± 5	0,012	0,03		
AT200		1(')		±1	0,014	0,03		
AT300	2	2(1)	±10		0,18	0,04		

Hinweis (1) Es handelt sich um einen Wert, der gegeben ist, wenn die Teilung des Motors 1 000 Impulse/Umdrehung beträgt.


Tabelle 5 Maximale Belastung

Einheit:

	3	
Modell und Größe		Maximale Belastung
	AT120	22
	AT200	12
	AT300	44

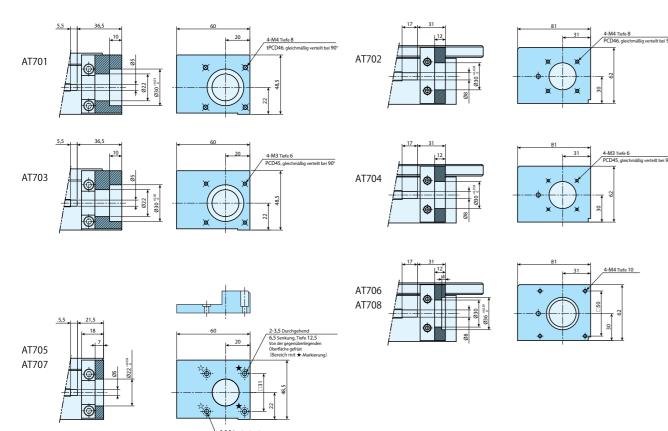
Anmerkung: Gilt sowohl in horizontaler wie vertikaler Richtung.

Ausführung mit Sensoren

Beispiel einer Kombination •

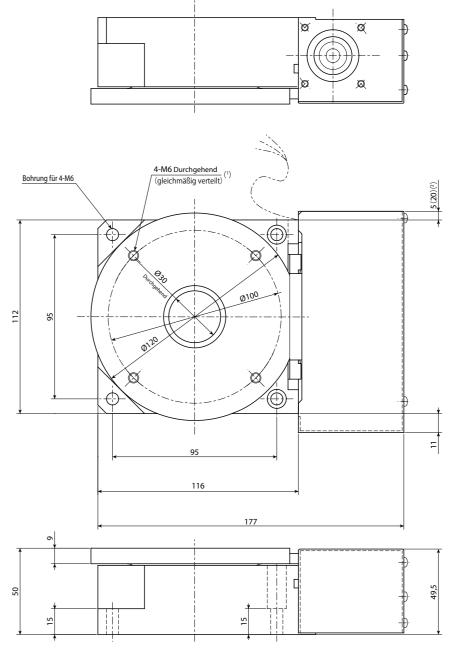
■ Konfiguration eines XY- θ Mehrachs-Positioniermechanismus

Die Kombination des Ausrichttisches AT mit einem **IKO**-Präzisionspositioniertisch mit einer oder mehreren Achsen ermöglicht die einfache Konfiguration des XY- θ Mehrachs-Positioniermechanismus. Niedrige Montagehöhe, Kompaktheit und hochpräzise Positionierfähigkeit ermöglichen eine Nutzung des Tisches als Ausrichttisch für Präzisionsmessausrüstung, Inspektionsausrüstung und Montagegeräte.


Tabelle 6 Konfigurationsbeispiel eines Multiachsen-Positioniermechanismus

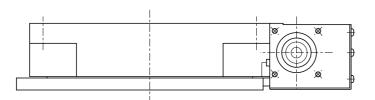
belle 6 Konfigurationsbeispiel eines Multiach		v_1.1	tatlu	Hubl	Einheit:
Aussehen als Multiachsen-Positioniermechanismus	Modelle von IX Pr in Kombination			X-Achse	Y-Achse
	iii Nombination	Thie Additional			
			TS125/125		50
		Ausführung	TS125/220	12	20
		mit einer	TS220/220	12	20
0		Achse	TS220/310	18	30
	Präzisionspositioniertisch TS/CT		TS260/350	25	50
			CT125/125	50	50
		Ausführung	CT220/220	120	120
		mit zwei – Achsen	CT260/350	150	250
		Actiscii	CT350/350	250	250
				100, 150	
				200	
		Ausführung mit einer Achse –	TSLH120M	250	
				300	
				150	
			TSLH220M	200, 250, 300	
				400	
			TSLH320M	300	
			TSLITSZOWI	400, 500	
				500	
			TSLH420M	600	
				800	
				100	100
	Präzisionspositioniertisch LH			200	100
			CTLH120M	200	200
				300	200
				300	300
				200	200
		Ausführung		300	200
		mit zwei	CTLH220M	300	300
		Achsen		400	300
				400	400
				300	300
				400	300
			CTLH320M	400	400
				500	400
				500	500

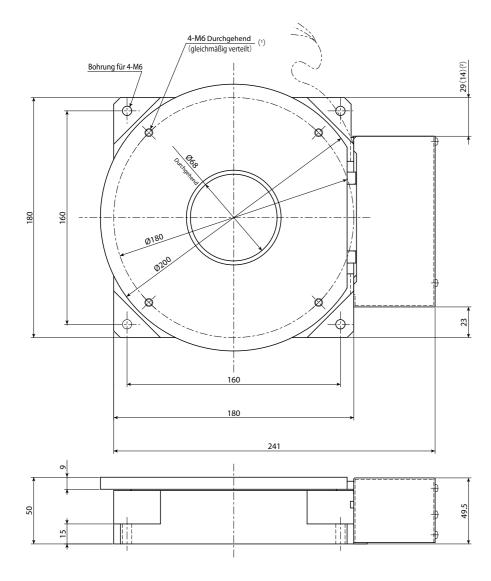
Abmessungen des Motorflansches


AT120, AT200

AT300

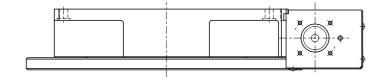
AT120

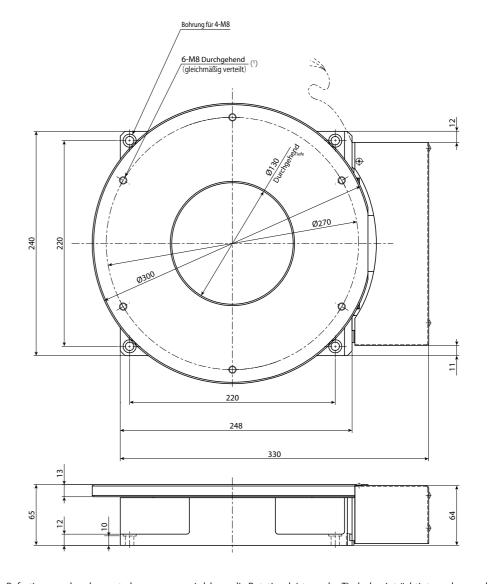

Masse: 4,4 kg


Hinweise (1) Wenn die Befestigungsschraube zu stark angezogen wird, kann die Rotationsleistung des Tischs beeinträchtigt werden, weshalb nie eine Schraube eingeführt werden sollte, die länger als die Durchgangsbohrung ist.

(2) Die in () angegebene Abmessung gilt für AT701 und AT703.

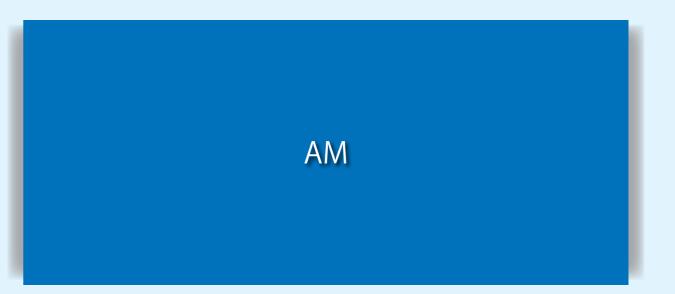
AT200




Masse: 9,9 kg

Hinweise (1) Wenn die Befestigungsschraube zu stark angezogen wird, kann die Rotationsleistung des Tischs beeinträchtigt werden, weshalb nie eine Schraube eingeführt werden sollte, die länger als die Durchgangsbohrung ist.

(²) Die in () angegebene Abmessung gilt für AT701 und AT703.


AT300

Masse: 21,0 kg

Hinweis (1) Wenn die Befestigungsschraube zu stark angezogen wird, kann die Rotationsleistung des Tischs beeinträchtigt werden, weshalb nie eine Schraube eingeführt werden sollte, die länger als die Durchgangsbohrung ist.

II-315

Kugelumlaufführung

Spindel

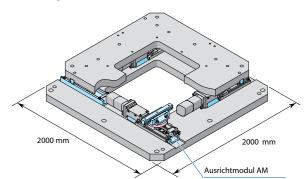
Linear / Rotation

Motorhalterung

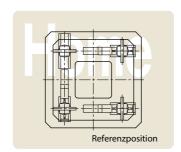
Kreuzrollenlager

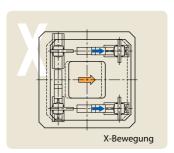
 Positioniermodul ermöglicht vielseitige Bewegungen

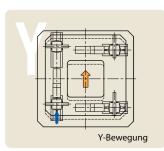
> Dies ist ein Positioniermodul, das für den Ausrichttisch durch die Kombiniation des hochsteifen Kreuzrollenlagers mit einer auf dem Präzisionspositioniertisch TU basierenden Kugelumlaufführung entwickelt wurde.

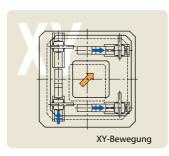

Höhenanpassung nicht erforderlich.

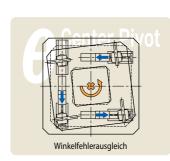
Die Toleranz der Höhenmaße wird mit hoher Präzision von $\pm 10~\mu m$ gesteuert. Der Ausrichttisch kann ohne Höhenanpassung des jeweiligen Ausrichtmoduls AM konfiguriert werden.

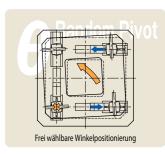

Große Flexibilität durch freie Gestaltung des Tisches je nach Verwendungszweck


Diese Einheit ermöglicht Ihnen die freie Gestaltung des Ausrichttisches je nach Verwendung durch die Kombination verschiedener Tische und Gestelle in dem Ausrichtmodul AM.


Tischgrößen bis zu 2000 mm werden unterstützt!




Konfigurationsbeispiel und Betriebsprinzip des Ausrichttisches



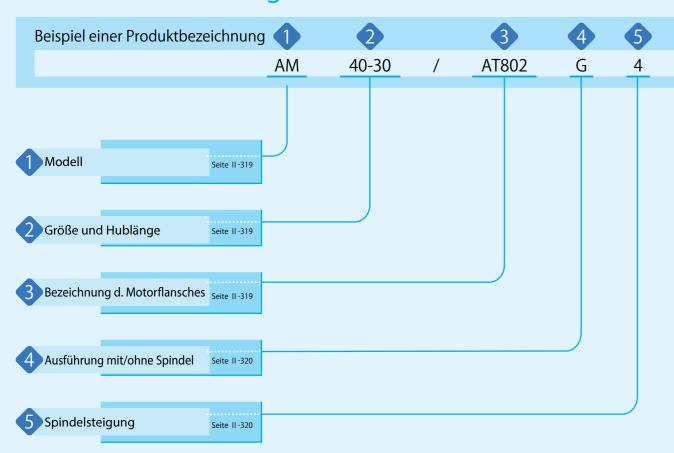
Wichtige Produktbezeichnungen

Antriebsmethode	Präzisionsspindel				
Linear-Wälzkörperführung und -Lager	Kugelumlaufführung Kreuzrollenlager				
Eingebaute Schmierplatte	Nicht eingebaut				
Tisch- und Gestellmaterial	Hochfester Stahl				
Sensor	Standardmäßig enthalten				

Genauigkeit

Führungsschiene

Sensor


Beispiel Tischkonfigurierung

	Einheit: mm
Wiederholgenauigkeit	±0,002
Positioniergenauigkeit	0,020
Leerlauf	-
Parallelität der Tischbewegung A	-
Parallelität der Tischbewegung B	0,008
Genauigkeit der Attitude	-
Geradheit	_
Umkehrspiel	0,003

Variation

Form	Modell und Größe	Größe W×L×H (mm)	Hublänge (mm)
W W W W W W W W W W W W W W W W W W W	AM25	86×130× 47	30
	AM40	120×180× 78	30
	AM60	220×290×110	90
L	AM86	350×390×148	120

Produktbezeichnung

Produktbezeichnung und Ausführung ...

1 Modell	AM: Ausrichtmodul AM
2 Größe und Hublänge	25- 30: Breite 25 mm, Hublänge 30 mm, Höhe 47 mm 40- 30: Breite 40 mm, Hublänge 30 mm, Höhe 78 mm 60- 90: Breite 60 mm, Hublänge 90 mm, Höhe 110 mm 86-120: Breite 86 mm, Hublänge 120 mm, Höhe 148 mm
Bezeichnung d. Motorflansches	AT800: Ohne Motorflansch Wählen Sie zur Angabe des Motorflansches eine Bezeichnung aus Tabelle 1 aus. • Motor sollte durch den Kunden montiert werden. • Bitte geben Sie die für den zu verwendenden Motor anwendbaren Motorflansch an. • Sollte Motorflansch ausgewählt werden, wird eine in Tabelle 2 dargestellte Kupplung vor dem Versand auf dem Tisch montiert. Die endgültige Anpassung sollte jedoch durch den Kunden erfolgen, da sie nur vorübergehend fixiert wird. • Bei einem Produkt ohne Motorflansch (AT800) ist keine Kupplung angebracht.

Tabelle 1 Anwendung des Motorflansches

Zu verwendender Motor			Flansch-		Motor	lansch			
Art	Hersteller	Baureihe	Modell	Nennleistung W	größe mm	AM25	AM40	AM60	AM86
			SGMMV-A2A	20	□25	AT801	_	I	_
			SGMMV-A3A	30		AT801	_	_	_
			SGMJV-A5A	50		_	AT802	_	_
			SGMAV-A5A	30		_	AT802	_	_
	YASKAWA		SGMJV-01A	100	□40	_	AT802	AT803	_
	ELECTRIC	Σ-V	SGMAV-01A	100		_	AT802	AT803	_
	CORPORATION		SGMAV-C2A	150		_	_	AT803	_
			SGMJV-02A	200		-	_	-	AT804
			SGMAV-02A	200	□60	_	_	1	AT804
			SGMJV-04A	400		_	_	_	AT805
			SGMAV-04A	400		_	_	-	AT805
	Mitsubishi Electric Corporation	J2-Jr	HC-AQ023	20	□28	AT806	_	_	_
		J2-J1	HC-AQ033	30		AT806	_	_	_
		J3, J4	HF-MP053, HG-MR053	50		-	AT802	1	_
			HF-KP053, HG-KR053		□40	_	AT802	-	_
AC-Servo-			HF-MP13, HG-MR13	100	L 40	_	AT802	AT803	_
motor			HF-KP13, HG-KR13	100		-	AT802	AT803	_
motor			HF-MP23, HG-MR23	200		_	_	-	AT804
			HF-KP23, HG-KR23		_	_	_	AT804	
			HF-MP43, HG-MR43	400	□60	_	_	_	AT805
			HF-KP43, HG-KR43	400		_	_	_	AT805
			MSMD5A	- 50		_	AT807	_	_
			MSME5A] 50	□38	_	AT807	_	_
			MSMD01	100	□ □ 30	_	AT807	AT808	_
	Panasonic	MINAS A5	MSME01	7 100		_	AT807	AT808	_
	Corporation	IVIINAS AS	MSMD02	200		_	_	_	AT809
			MSME02		□60	_	_	_	AT809
			MSMD04	400		_	_	_	AT810
			MSME04	400		_	_	_	AT810
	110 111 1 111		ADMA-R5L	50	□40	_	AT802	_	-
	Hitachi Industrial	AD	ADMA-01L	100	□40	_	AT802	AT803	-
	Equipment Systems Co., Ltd	AD	ADMA-02L	200	□60	-	_	_	AT804
	Systems Co., Ltd		ADMA-04L	400	□60	_	_	_	AT805

Anmerkung: Detaillierte Motorspezifikationen finden Sie in dem jeweiligen Katalog des Herstellers.

Tabelle 2 Kupplungsmodelle

abelie 2 Kappiungsmodelle							
Motor- flansch	Kupplungsmodelle	Hersteller	Trägheitsmoment der Kupplung J _c ×10⁵kg • m²				
AT801	UA-15C- 5× 5	Sakai Manufacturing Co., Ltd	0,024				
AT802	UA-20C- 5× 8	Sakai Manufacturing Co., Ltd	0,086				
AT803	UA-25C- 8× 8	Sakai Manufacturing Co., Ltd	0,290				
AT804	UA-30C-10×14	Sakai Manufacturing Co., Ltd	0,603				
AT805	UA-35C-10×14	Sakai Manufacturing Co., Ltd	1,34				
AT806	UA-15C- 5× 6	Sakai Manufacturing Co., Ltd	0,024				
AT807	UA-20C- 5× 8	Sakai Manufacturing Co., Ltd	0,086				
AT808	UA-25C- 8× 8	Sakai Manufacturing Co., Ltd	0,290				
AT809	UA-30C-10×11	Sakai Manufacturing Co., Ltd	0,603				
AT810	UA-35C-10×14	Sakai Manufacturing Co., Ltd	1,34				

Anmerkung: Detaillierte Angaben zu den Kupplungen finden Sie im Katalog des Herstellers.

4 Ausführung mit/ohne Spindel
N: Ohne Spindel
Geben Sie bei der Auswahl von N für ♦ AT800 und für ♦ "Kein Symbol " an.

5 Spindelsteigung

4: Steigung 4 mm (gilt für AM25 und AM40)
5: Steigung 5 mm (gilt für AM60 und AM86)

1N=0,102kgf=0,2248lbs. 1mm=0,03937 Zoll

Ausführungen •

Tabelle 3 Genauigkeit

Einheit: mm

Modell und	Hub-	Länge der	Wiederhol-	Positioniergenauigkeit	Parallelität der	Umkehrspiel (1)
Größe	länge (¹)	Führungsschiene	genauigkeit (1)	(1)	Tischbewegung A	Offikeriispier (*)
AM25	30	130				
AM40	30	180	±0,002	0,020	0,008	0,003
AM60	90	290		0,020	0,006	0,003
AM86	120	390				

Hinweis (1) Gilt nicht für die Ausführung "Ohne Spindel"

Table 4 Bauhöhe

Einheit: mm

Modell und Größe	Modulhöhe	Höhentoleranz	
AM25	47	±0,010	
AM40	78		
AM60	110		
AM86	148		

Anmerkung: Es handelt sich um Distanzwerte zischen der Montagefläche und der Mitte der Oberfläche des Moduls, sofern sich die obere und die untere Achse orthogonal schneiden und die Kugelumlaufführung jeder Achse in der Mitte des Hubs bleibt.

Tabelle 5 Maximale Geschwindigkeit

Modell und Größe	Spindelsteigung mm	Maximale Geschwindigkeit mm/s	
AM25	4	200	
AM40		200	
AM60	- 5	250	
AM86		250	

Anmerkung: Um die durchführbare, maximale Geschwindigkeit zu ermitteln, müssen die Ablaufschemata des zu verwendeten Motors und die Lastbedingungen berücksichtigt werden.

Tabelle 6 Ausführungen der Spindel

Einheit: mm

Modell und Größe	Schaftdurchmesser	Gesamtlänge	
AM25- 30	6	146	
AM40- 30	8	158	
AM60- 90	12	263	
AM86-120	20	359	

Table 7 Maximale Belastung

Einheit: kg

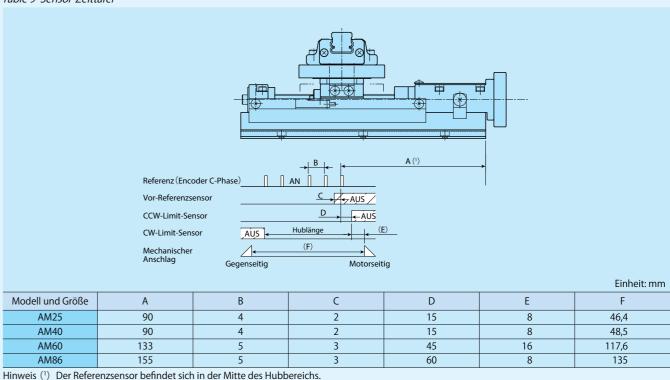
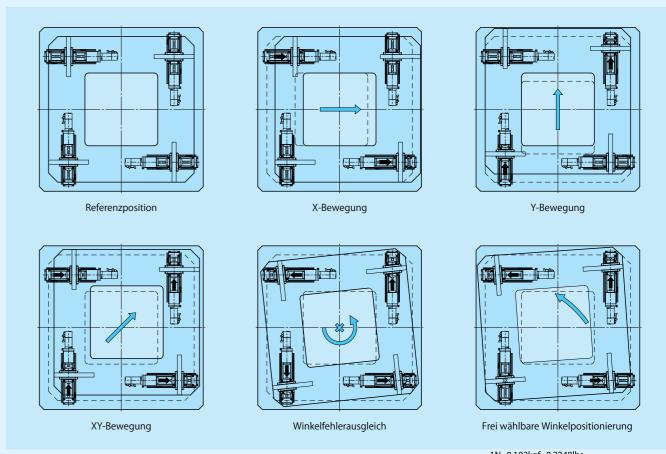

Modell und Größe	Maximale Belastung		
Modell und Gloise	Horizontal	Vertikal	
AM25	11	4,6	
AM40	39	10	
AM60	88	13	
AM86	210	23	

Tabelle 8 Trägheits- und Anlaufmoment des Tisches

	Modell und Größe	Trägheitsmoment des Tisches J _T ×10⁻⁵kg∙m²	Anlaufmoment T _s N•m
I	AM25	0,028	0,02
I	AM40	0,08	0,04
I	AM60	0,59	0,09
ı	AM86	4,97	0,13

Ausführung mit Sensoren



Beispiel einer Motion-Ausführung

Durch Kombination des AM können folgende Tischkonfigurationen erzielt werden.

Es ist außerdem möglich, diese Einheit an das zu liefernde Gerät zu montieren. Bei Interesse bitte **IKO** kontaktieren.

1N=0,102kgf=0,2248lbs.

Abmessungen des Motorflansches

AT800 (ohne Flansch)

AT801

AT802

AT802

AT803

AT804

AT804

AT805

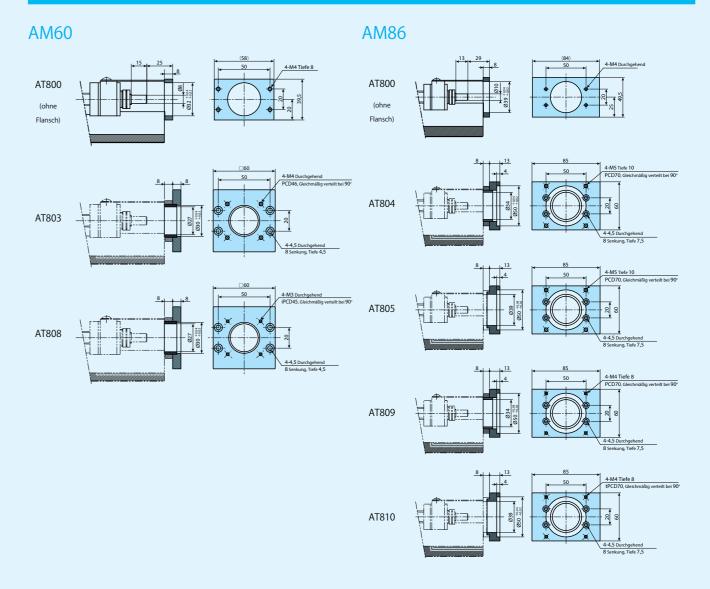
AT805

AT806

AT807

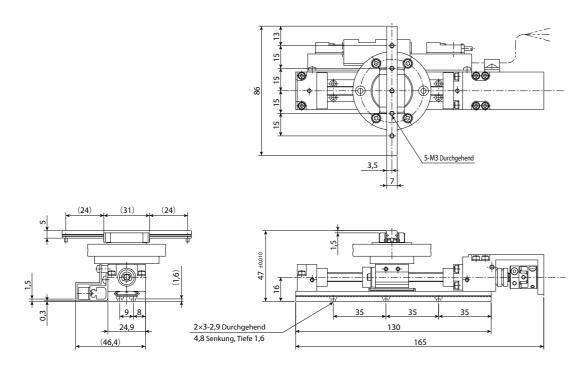
AT807

AT807

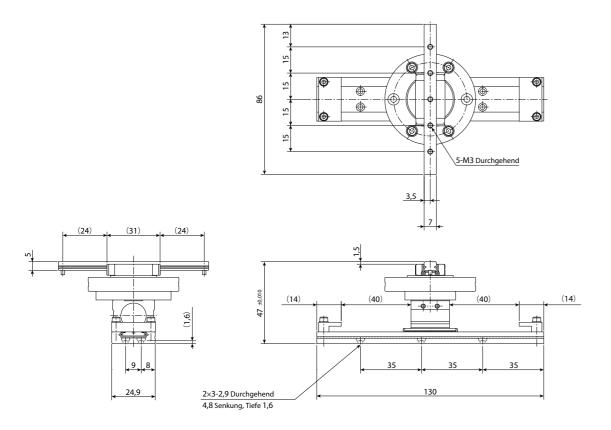

AT807

AT807

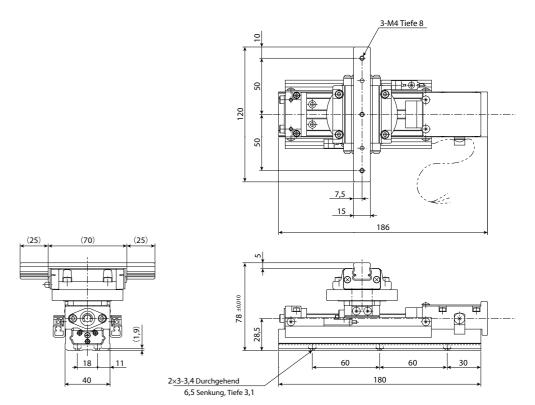
AT807


AT808

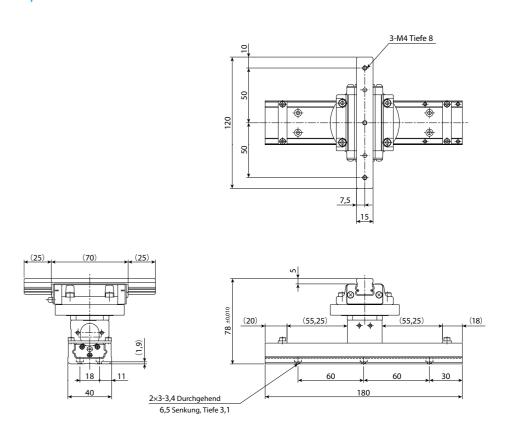
AT807


IK Ausrichtmodul AM

AM25 Ohne Motorflansch und mit Spindel

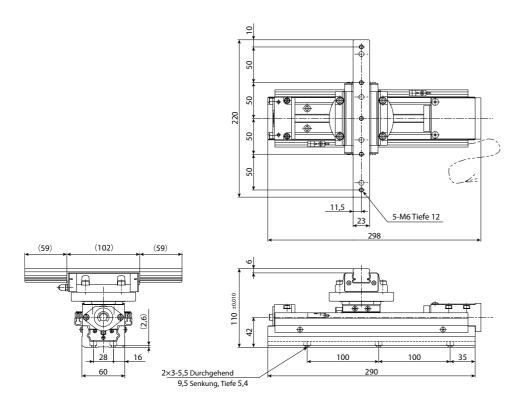

Masse: 0,6 kg

AM25 Ohne Spindel

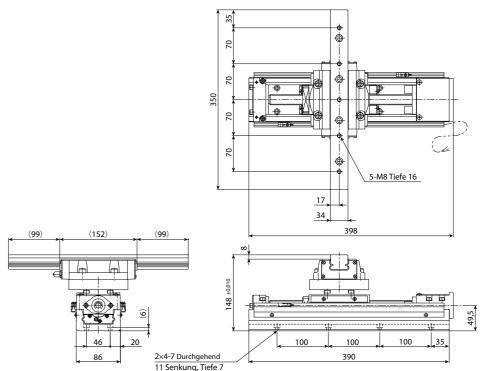

Masse: 0,4 kg

AM40 Ohne Motorflansch und mit Spindel

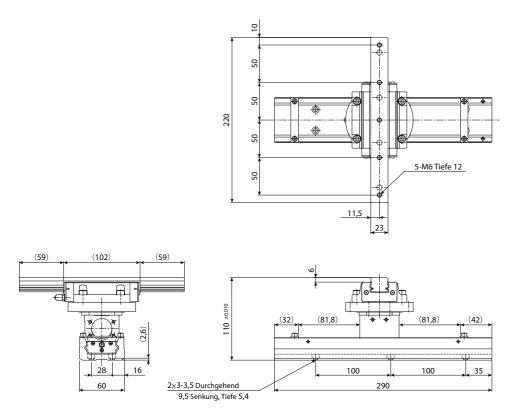
Masse: 2,0 kg


AM40 Ohne Spindel

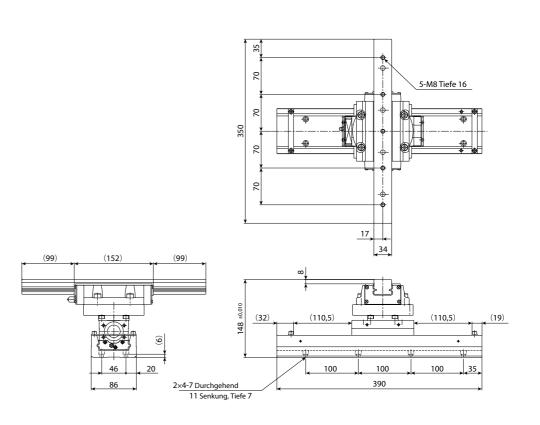
Masse: 1,5 kg


IK Ausrichtmodul AM

AM60 Ohne Motorflansch und mit Spindel

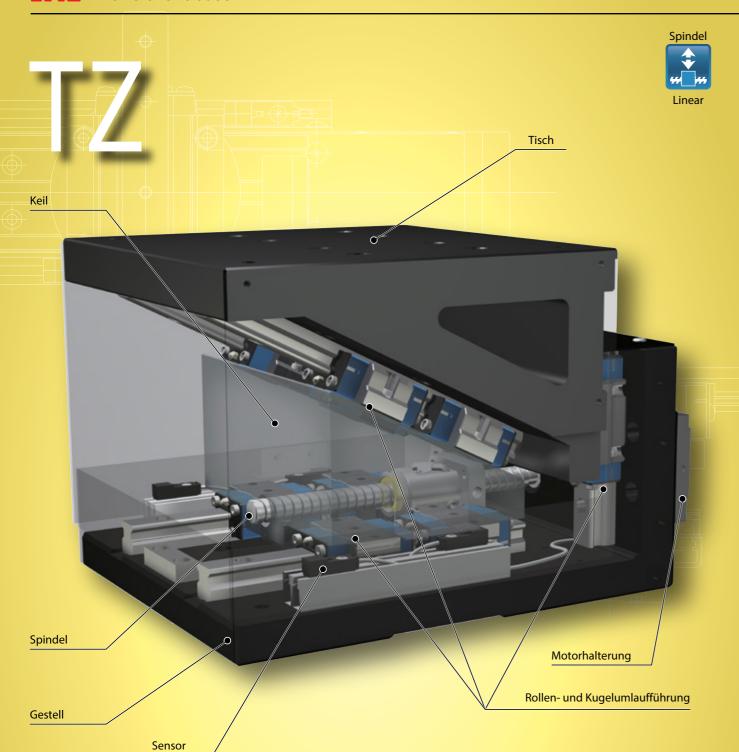

Masse: 6 kg

AM86 Ohne Motorflansch und mit Spindel


Masse: 17 kg

AM60 Ohne Spindel

Masse: 5 kg


AM86 Ohne Spindel

Masse: 15 kg

1N=0,102kgf=0,2248lbs. 1mm=0,03937 Zoll

N

Wichtige Produktbeschreibungen

Antriebsmethode	Präzisionsspindel
Wälzkörper-Linearführung	Rollenumlaufführung Kugelumlaufführung
Eingebaute Schmierplatte	Eingebaute C-Lube Schmierplatte (TZ···H und TZ···X)
Tisch- und Gestellmaterial	Aluminiumlegierung (Alumite)
Sensor	Standardmäßig enthalten

Genauigkeit

	Einheit: mm
Wiederholgenauigkeit	±0,001
Positioniergenauigkeit	0,005
Leerlauf	0,001
Parallelität der Tischbewegung A	
Parallelität der Tischbewegung B	-
Verwindungsgenauigkeit	-
Geradheit	
Umkehrspiel	-
	Positioniergenauigkeit Leerlauf Parallelität der Tischbewegung A Parallelität der Tischbewegung B Verwindungsgenauigkeit Geradheit

Vorteile

Kompakter Präzisionshubtisch

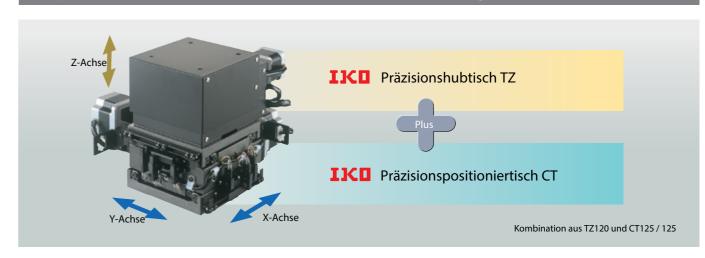
Dies ist ein Hubtisch zur Durchführung von kompakter jedoch hochpräziser vertikaler Positionierung unter Verwendung eines einzigartigen Keilmechanismus.

Je nach Verwendungszweck zwei Modelle und Größen wählbar

Es sind zwei Modelle verfügbar, das hochpräzise und hochsteife Modell mit eingebauter Rollenumlaufführung und das Standardmodell mit besserem Preis-Leistungs-Verhältnis. Außerdem sind zwei Größen verfügbar, mit Tischabmessungen von jeweils \square 120 mm und \square 200 mm. Es kann aus zwei Verkleinerungsfaktoren des Keils gewählt werden, wodurch die vertikale Positionierung mit einem Hub von bis zu 24mm ermöglicht wird.

● Installation eines Linear Encoders ermöglicht bestmögliche Positionierung.

Die Auswahl einer optionalen Einheit mit Linear Encoder und geschlossenem Regelkreis ermöglicht eine noch präzisere Positionierung.

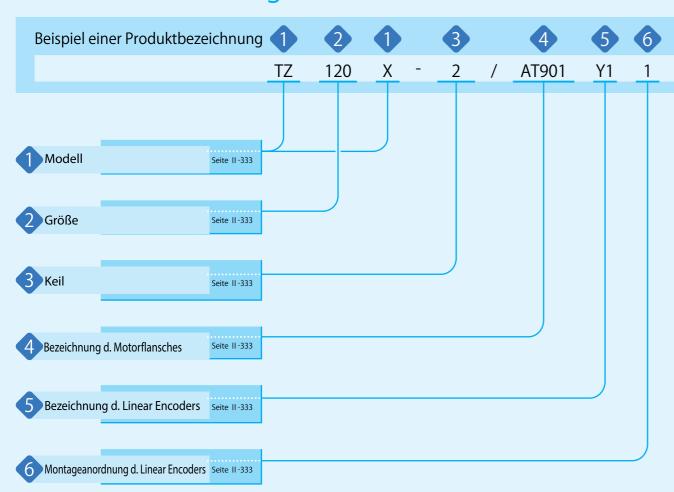

Sensor standardmäßig enthalten

Grenzsensor und Referenz-/ Vor-Referenzsensoren sind standarmäßig enthalten. Der Sensor ist kompakt in den Tisch eingebaut, wodurch die Integration in eine Maschine oder eine Gerätschaft erleichtert wird.

Erhältlich als Z-Achse bei Mehrachskonfigurationen

Durch das Positionieren der Einheit auf einem Führungsschlitten eines Präzisionspositioniertisches kann die Einheit als Z-Achsen-Positioniermechanismus des Mehrachstisches verwendet werden.

Beispiel einer Kombination mit XYZ-Positioniertisch unter Verwendung des Präzisionshubtisches TZ



Variation

Form	Model und Größe	Tischbreite (mm)	Art der Wälzkörper-Linearführung	Verkleinerungsfaktor des Keils
© © 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TZ120 -2	□120	Kugelumlaufführung	1:2
	TZ120 -4			1:4
	TZ120X-2		Rollenumlaufführung	1:2
	TZ120X-4			1:4
	TZ200H-2	□200	Kugelumlaufführung	1:2
	TZ200H-4			1:4
	TZ200X-2		Rollenumlaufführung	1:2
	TZ200X-4			1:4

1N=0,102kgf=0,2248lbs. 1mm=0,03937 Zoll

Produktbezeichnung.

Produktbezeichnung und Ausführung

identisch.

i iodaktoczcicii	mang and Adsidinaria
1 Modell	TZ : Präzisionshubtisch (gilt für Größe 120) TZ···H : Präzisionshubtisch (gilt für Größe 200) TZ···X : Präzisionshubtisch, mit hoher Präzision und Steifigkeit (gilt für Größe 120, 200)
2 Größe	120: Tischgröße □120 mm 200: Tischgröße □200 mm
3 Keil	2: Verkleinerungsfaktor des Keils 1: 2 4: Verkleinerungsfaktor des Keils 1: 4 Der Faktor gibt den Verkleinerungsfaktor der vertikalen Fahrstrecke zur Vorschubgeschwindigkeit der Spinde
Bezeichnung d. Motorflansches	Wählen Sie zur Angabe des Motorflansches eine Bezeichnung aus Tabelle 1.
	 Motor sollte durch den Kunden montiert werden. Bitte geben Sie die für den zu verwendenden Motor anwendbaren Motorflansch an. Eine in Tabelle 2 dargestellte Kupplung wird vor dem Versand auf dem Tisch montiert. Die endgültige Anpassung sollte jedoch durch den Kunden erfolgen, da sie nur vorübergehend fixiert wird. Sollte ein AC-Servomotor-Motorflansch ausgewählt werden, wird kein Referenzsensor bereitgestellt.
Bezeichnung d. Linear Encoders	Kein Symbol: Ohne Linear Encoder Für die Auswahl des Linear Encoders siehe Tabelle 3.
	"Mit Linear Encoder" nur anwendbar für AC-Servomotoren von TZ····H und TZ····X. Für anwendbare Modelle und Motorflansche siehe Tabelle 1.
6 Montageanordnung d. Linear Encoders	Kein Symbol: Rechts von der dem Motor gegenüberliegenden Seite aus gesehen 1: Links von der dem Motor gegenüberliegenden Seite aus gesehen • Die Montageanordnung des Linear Encoders und die Richtung des Kabelausgangs des Sensorkabels sind

Tabelle 1 Anwendung des Motorflansches

Motormodell			Flansch-	Motorf	lansch		
Art	Hersteller	Baureihe	Modell	Nennleistung W	größe mm	TZ120 TZ120X	TZ200H TZ200X
			SGMJV-A5A	50		AT901	_
	YASKAWA		SGMAV-A5A	50		AT901	-
	ELECTRIC	Σ-V	SGMJV-01A	100	□40	AT901	AT902
	CORPORATION		SGMAV-01A	100		AT901	AT902
			SGMAV-C2A	150		_	AT902
			HF-MP053, HG-MR053	50		AT901	-
	Mitsubishi Electric	J3, J4	HF-KP053, HG-KR053	30	□40	AT901	-
AC-Servo-	Corporation	J3, J 4	HF-MP13, HG-MR13	100	_ ⊔40	AT901	AT902
motor		HF-KP13, HG-KR13	100		AT901	AT902	
		MINAS A5	MSMD5A	- 50	□38	AT903	-
	Panasonic		MSME5A			AT903	_
	Corporation		MSMD01	100		AT903	AT904
			MSME01			AT903	AT904
			AR46		□42	AT905	-
			AR66		□60	_	AT906
	ORIENTAL	a Schritt	AR69		□60	_	AT906
Schrittmotor	MOTOR	a scillit	AS46		□42	AT907	
Co., Ltd.			AS66		□60	ı	AT908
	CO., Ltd.		AS69		□60	-	AT908
		RK	RK54 • CRK54		□42	AT907	_
		CRK	RK56 • CRK56 (1)		□60	_	AT908

Hinweis (1) Gilt für den Außendurchmesser Ø8 der Motorwelle.

 $Anmerkung: Detaillierte\ Motorspezifikationen\ finden\ Sie\ in\ dem\ jeweiligen\ Katalog\ des\ Herstellers.$

Tabelle 2 Kupplungsmodelle

Motor- flansch	Kupplungsmodelle	Hersteller	Trägheitsmoment der Kupplung J _c × 10 ⁻⁵ kg • m²
AT901	UA-20C-5× 8	Sakai Manufacturing Co., Ltd	0,086
AT902	UA-25C-8× 8	Sakai Manufacturing Co., Ltd	0,29
AT903	UA-20C-5× 8	Sakai Manufacturing Co., Ltd	0,086
AT904	UA-25C-8× 8	Sakai Manufacturing Co., Ltd	0,29
AT905	UA-20C-5× 6	Sakai Manufacturing Co., Ltd	0,086
AT906	UA-25C-8×10	Sakai Manufacturing Co., Ltd	0,29
AT907	UA-20C-5× 5	Sakai Manufacturing Co., Ltd	0,086
AT908	UA-25C-8× 8	Sakai Manufacturing Co., Ltd	0,29

 $Anmerkung: Detaillierte\ Angaben\ zu\ den\ Kupplungen\ finden\ Sie\ im\ jeweiligen\ Katalog\ des\ Herstellers.$

Table 3 Linear Encoder-Modelle

Table 5 Elitear Effective Modelle						
Zielmodelle	TZ120X			TZ200H、TZ200X		
Produktbezeichnung des Linear Encoders	Y1	J1	P1	Y2	J2	P2
Hersteller von kompatiblen	YASKAWA ELECTRIC	Mitsubishi Electric	Panasonic	YASKAWA ELECTRIC	Mitsubishi Electric	Panasonic
Treibern	CORPORATION Corporation Corporation			CORPORATION	Corporation	Corporation
Hersteller		Renishaw plc			Renishaw plc	
Kopf des Linear Encoders		T1031-30A		RGH20B30L00A	RGH20Y	30D33A
Linear Encoder	A-9705-0004				A-9660-0080	
Schnittstelle	Ti0000A00V Ti0200A04A				_	
Referenzmarkierung		_			A-9561-0065	

Table 4 Ausführungen

Modell und Größe	Verkleinerungsfaktor des	Spindelsteigung	Auflösung (1)	Hublänge
Modell ulla Gloise	Keils	mm	μ m/lmpuls	mm
TZ120 -2	1:2		2	10
TZ120 -4	1:4		1	5
TZ120X -2	1:2	4	2,0 (0,1)	10
TZ120X -4	1:4		1,0 (0,1)	5
TZ200H -2	1:2		2,5 (0,1)	24
TZ200H -4	1:4	5	1,25 (0,1)	12
TZ200X -2	1:2		2,5 (0,1)	24
TZ200X -4	1:4		1,25 (0,1)	12

Hinweis (1) Die Auflösung gibt einen Wert an, der gegeben ist, wenn die Motorteilung 1000 Impulse/Umdrehung beträgt. Anmerkung: Die Werte in () geben Werte mit Linear Encodern und der Baureihe J3 der Mitsubishi Electric Corporation bzw. dem MINAS A5-System von Panasonic Corporation an. Bei Auswahl des Σ V-Systems von YASKAWA ELECTRIC CORPORATION sollte der Wert 0,078125 µm/Impuls betragen.

Tabelle 5 Genauigkeit

Einheit: mm

Modell und Größe	Verkleinerungsfaktor des Keils	Wiederhol- genauigkeit	Positioniergenauigkeit	Leerlauf	Parallelität beim Anheben des Tisches	Rechtwinkligkeit beim Anheben des Tisches	
TZ120 -2	1:2	±0,001 —		_		_	
TZ120 -4	1:4	±0,001			_		
TZ120X -2	1:2	±0,001	_	0,001	0,010	0,010	
TZ120X -4	1:4	(0,005)	0,001	0,010	0,010		
TZ200H -2	1:2	±0,001	_	_	_	_	
TZ200H -4	1:4	±0,001	(0,005)		_		
TZ200X -2	1:2	±0,001	_	0,001	0,010	0,010	
TZ200X -4	1:4	±0,001	(0,005)	0,001	0,010	0,010	

Anmerkung: Die Werte in () geben Werte mit Linear Encoder an.

Table 6 Maximale Geschwindigkeit

Table o Maximale deservatingisch						
Modell und Größe	Verkleinerungsfaktor des Keils	Spindel- steigung	Maximale Geschwindigkeit mm/s			
	des itens	mm	AC-Servomotor	Schrittmotor		
TZ120 -2	1:2		100	60		
TZ120 -4	1:4	4	50	30		
TZ120X -2	1:2	4	100	60		
TZ120X -4	1:4		50	30		
TZ200H -2	1:2		125	75		
TZ200H -4	1:4	5	62,5	37,5		
TZ200X -2	1:2	,	125	75		
TZ200X -4	1:4		62,5	37,5		

Anmerkung: Um die durchführbare, maximale Geschwindigkeit zu ermitteln, müssen die Ablaufschemata des zu verwendeten Motors und die Lastbedingungen berücksichtigt werden.

Table / Maximale Belastung Einheit: kg					
Modell und Größe	Verkleinerungsfaktor	Maximale Belastung			
Modell ullu Gloise	des Keils	Horizontal	Vertikal		
TZ120	1:2	36	10		
12120	1:4	36	10		
TZ120X	1:2	82	10		
121207	1:4	146	10		
TZ200H	1:2	109	9		
1Z200H	1:4	109	10		
TZ200X	1:2	125	9		
122007	1:4	160	10		

Tabelle 8 Ausführungen der Spindel

Einheit: mm

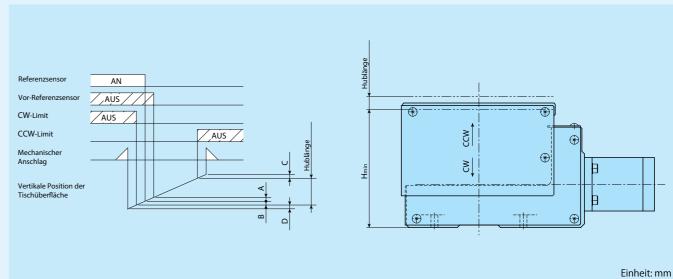
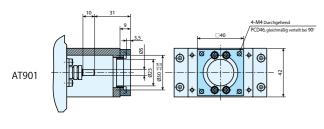

Modell und Größe	Schaftdurchmesser	Gesamtlänge
TZ120	8	105
TZ120X	8	168
TZ200H	12	215
TZ200X	12	215

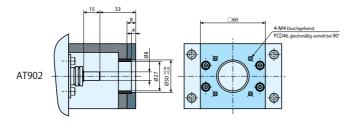
Tabelle 9 Trägheits- und Anlaufmoment des Tisches

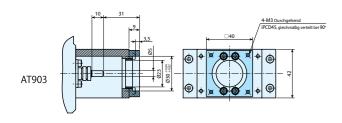
Modell und Größe	Verkleinerungsfaktor des Keils	Trägheitsmoment des Tisches J _T ×10⁻⁵kg∙m²	Anlaufmoment T _s N•m
TZ120 -2	1:2	0,076	0,03
TZ120 -4	1:4	0,061	0,02
TZ120X -2	1:2	0,076	0,03
TZ120X -4	1:4	0,064	0,02
TZ200H -2	1:2	0,581	0,07
TZ200H -4	1:4	0,473	0,06
TZ200X -2	1:2	0,581	0,07
TZ200X -4	1:4	0,473	0,06

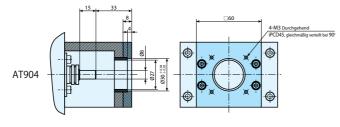
Ausführung mit Sensoren

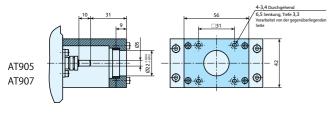
Table 10 Sensor-Zeittafel

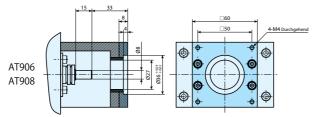


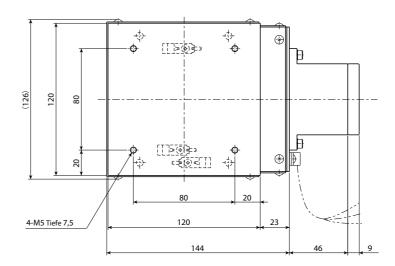

Produktbezeichnung	А	В	С	D
TZ120 -2 TZ120X -2	1	1	1	1
TZ120 -4 TZ120X -4	0,5	0,5	0,5	0,5
TZ200H -2 TZ200X -2	1,5	1	2,5	1
TZ200H -4 TZ200X -4	0,75	0,5	1,25	0,5

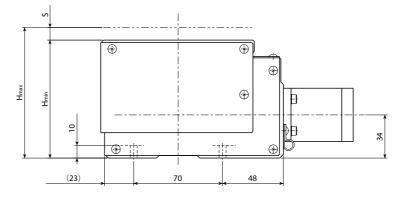

Abmessungen des Motorflansches

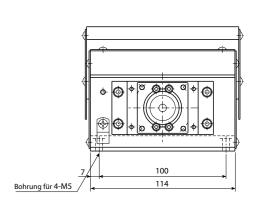

TZ120, TZ120X


TZ200H, TZ200X

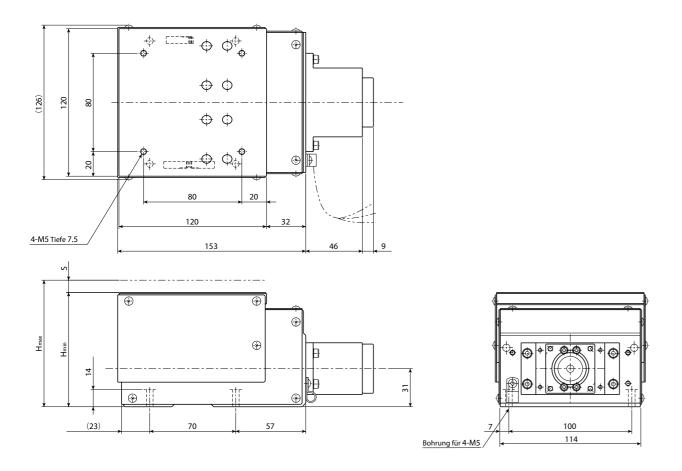






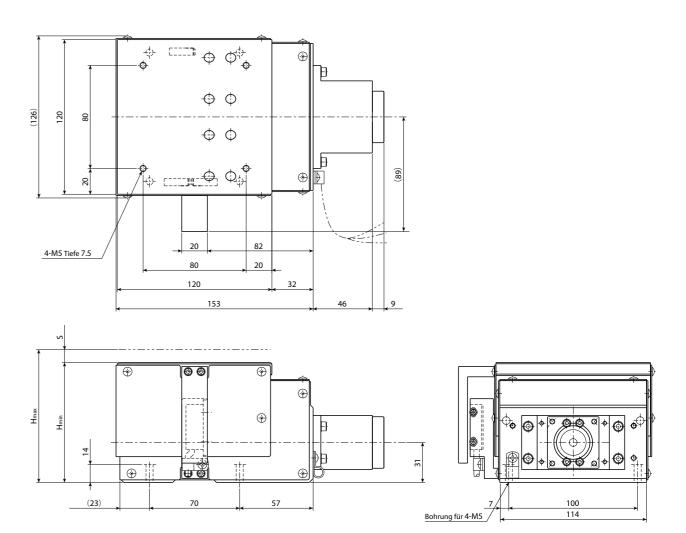


TZ120



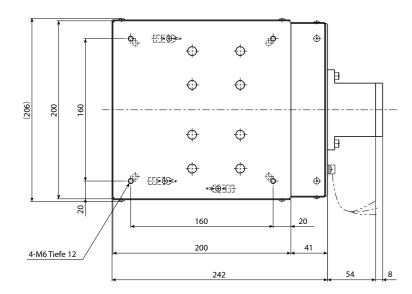
Einheit: mm

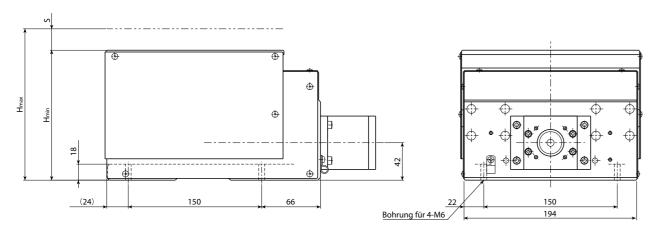
Emilierim						
Produktbezeichnung	Verkleinerungsfaktor des Keils	Masse (Ref.) kg	Montagebohrungen des Tisches Hmin Hmax (Position CW-Limit) (Position CCW-Limit)		Hublänge S	
TZ120-2	1:2	3,8	93	103	10	
TZ120-4	1:4	3,4	84,5	89,5	5	


TZ120X ohne Linear Encoder

Einheit: mm

Produktbezeichnung		Verkleinerungsfaktor des Keils	Masse (Ref.) kg	Montagebohrur H _{min} (Position CW-Limit)	ngen des Tisches H _{max} (Position CCW-Limit)	Hublänge S
	TZ120X-2	1:2	3,8	93	103	10
	TZ120X-4	1:4	3,4	84,5	89,5	5

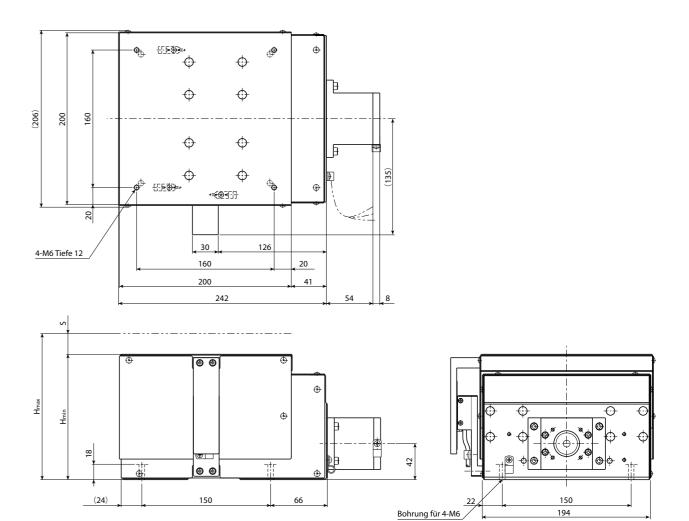

TZ120X mit Linear Encoder



Einheit: mm

Produktbezeichnung	Verkleinerungsfaktor des Keils	Masse (Ref.) kg	Montagebohrungen des Tisches H _{min} H _{max} (Position CW-Limit) (Position CCW-Limit)		Hublänge S
TZ120X-2/F	1:2	4,5	93	103	10
TZ120X-4/F	1:4	4,1	84,5	89,5	5

TZ200H, TZ200X ohne Linear Encoder



Einheit: mm

Produktbezeichnung	Verkleinerungsfaktor des Keils	Masse (Ref.) kg	Montagebohrungen des Tisches H _{min} H _{max} (Position CW-Limit) (Position CCW-Limit)		Hublänge S
TZ200H-2	1:2	13,2	146	170	24
TZ200H-4	1:4	12,2	132	144	12
TZ200X-2	1:2	13,3	146	170	24
TZ200X-4	1:4	12,3	132	144	12

TZ200H, TZ200X mit Linear Encoder

Einheit: mm

Entroicin						
Produktbezeichnung	Verkleinerungsfaktor des Keils	Masse (Ref.) kg	Montagebohrur H _{min} (Position CW-Limit)			
TZ200H-2/F	1:2	14,2	146	170	24	
TZ200H-4/F	1:4	13,2	132	144	12	
TZ200X-2/F	1:2	14,3	146	170	24	
TZ200X-4/F	1:4	13,3	132	144	12	

Treiberausführung für Tische mit Linearmotorantrieb

■ Treiberausführung NCR für NT38V

- Ausführung mit geringer Spannung (DC24V) und kompaktem Design von 115 x 100 x 33,8 mm. Trägt zur Verkleinerung der Geräte und der Kompaktheit bei.
- Die Ausregelzeit wird durch die Einstellung von zwei Parameterarten, Trägheit und Reibung, sowie durch die Drehmomentsteuerung reduziert.
- Die PC-Bearbeitungssoftware verfügt über eine 4ch Echtzeit-Oszillometer-Funktion und eine Funktion zur Resonanzfrequenzmessung etc. sowie Parameter-Bearbeitungsfunktionen, die eine einfache Maschinendiagnose und Anlauf / Anpassung des Linearmotors ermöglichen.

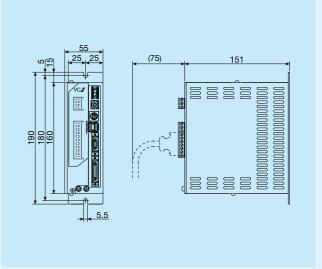



Tabelle 1 Ausführungen für NCR

Tabelle T Aus	stunru	ngen	tur NCR	
		Produ	ıktbezeichnung	NCR-DCE0D3B-021D-S135
Artikel		_		NCN DCLODSD 021D 5133
	Ein-	Art		Trennung der Stromversorgung von Regelkreis und des Hauptkreis
	gangs-	Cnani	nungsangabe	dauerhaft: DC24V ±5% (min. 22,8 V bis max. 25,2 V)
	span-		nungsangabe	kurzzeitig: DC21,6 V bis DC28V (außerhalb des Kompensationsbereichs des Drehmoments)
	nung	Art de	er Stromstärke	DC8,0 A (bei Nennleistung)
Elektrische Ausführung	Dauer	ausga	ngsstrom	6,5 Arms
Austurifulig	Max. A	Ausgar	ngsstrom	13,0 Arms
	Trägei	rfreque	enz	10 kHz
	Eingar	ngs/Au	usgabesignal	8 Eingänge und 4 Ausgänge (DC12~24 V; Optokoppler isoliert)
	Komm	nunika	tion	USB 2.0 (Full Speed): 1ch, RS-422A serielle Kommunikation: 1ch
	Haupt	funkti	on	Drehzahlsteuerung / Impulskettenbetrieb, Drehmomentbegrenzung, Selbstdiagnose und Forward /
	laupt	iunku		Backward-Switching
				Externer Impulskettenbefehl
				Wechsel des Richtungsimpulses / Richtungs- + Schaltimpuls / Impuls mit 90-Grad Phasenunterschied
		ebs-		Leitungstreiber: 4 MHz (16 MHz bei 4-facher Multiplikation)
			Impulsketten- betrieb	Umschalten der Phasensequenz, elektronisches Getriebe (Impulskettenbefehl-Ratio)
	 Betrie			und Befehls-Mittelungsfunktion
	modu			Interner Impulskettenbefehl
	modus			Kriechbetrieb, 7 Positionierpunkte, "Return-to-Origin", 2 Beschleunigungs- / Verzögerungspunkte, S Beschleuni-
				gung / Verzögerung (Befehlsmittelungs-Funktion wird verwendet)
			Drehzahl-	Analogbefehl Spannungsverstärkungswechsel, 7 interne Drehzahlsteuerungspunkte
			steuerungs- betrieb	Beschleunigungs-/Verzögerungsdauer: 0~9,999 sek.
	Drehmomentbegrenzung		ntbegrenzung	2 Parameter-Einstellpunkte (Vorwärts / Rückwärts getrennt)
Funktionale	Servo-Leistungsver-		nasver-	Umschalten der Geschwindigkeitsverstärkung: 3 Punkte (normal, geringe Geschw. und GSEL-Wechsel), Drehmo-
Spezifikation			_	mentbefehls-Filter
	Dessei	besserungsfunktion		Vorschub (Drehzahl, Trägheit und Reibung) und 5 Kerbfilterpunkte
	Steuereingangssignal (8 Punkte)		ngssignal	Anlauf, Servo an, Drehmomentbegrenzung, Auswahl der Geschwindigkeitsverstärkung, Reset, Modusauswahl, Befehlsauswahl, Befehlsimpuls-Eingangsunterdrückung, Befehlsumkehr, Notaus, Interner Impulsanlauf, Ursprungs-LS, Richtung beim Überfahren der Ursprungsmarkierung sowie nach erfolgter Richtungsumkehr, Positionsausgabe im Vorwärts- und Rückwärts-Kriechbetrieb, Anforderung Alarm-Code Ausgabe und Befehlsdatenerkennungsunterdrückung
	Steue	rausga	ingssignal	Bereit, Alarm, Abweichung Bereich A und B, Bremsen lösen, Drehzahl 0, Markiererausgang,
	(4 Pun	kte)		im Notaus, "Return-to-Origin" abgeschlossen
	Überw	Überwachungsfunktion		Statusbestätigung durch 4-Punkt Statusanzeige-LEDs PWR (grün), RDY (grün), RUN (grün), ALM (rot) Der folgende Monitor kann in der optionalen optimierten Bearbeitungssoftware verwendet werden Verschiedene Statusangaben, Alarmangaben, Statusanzeige durch Oszillometer-Funktion etc.
	Schutz	zfunkti	ion	Encoder-Ausfall, Ausfall der Erfassung des magnetischen Pols, Überdrehung, Überlastung, Unterspannung, Überspannung, Überstromausfall, Sollwertabweichung, DSP-Fehler und Überhitzungsschutz
	Umge	bungs	temperatur	0 bis 55 ° C Lagerung: -20 bis 60 ° C
I Imaab	Umge	bungs	feuchtigkeit	90 %RH oder geringer (kondensfrei halten), Lagerung: 85 %RH oder geringer (kondensfrei halten)
Umgebung	Vibrat	ionsbe	eständigkeit	0,5 G (10∼50 Hz) Trotzdem vor Resonanzen schützen
	Stoßfe	estigke	eit	5 G
Masse				0,41 kg

■ Ausführung NCR, Treiber für NT...H

- Treiber und Positioniereinheit sind integriert und das System durch eine optimierte Verdrahtung verkleinert.
- Mit der Digitalsteuerung wird eine höhere Verlässlichkeit und Ver wendbarkeit sowie Abweichungsfreiheit, keine Anpassungsschwan kungen und Verbesserung der Mensch-Maschine-Schnittstelle erzielt.
- Einfacher Positionier- und Impulskettenbetrieb wird durch die Modusauswahl für Anwendungen mit einem großen Bereich an Verwendungszwecken unterstützt.
- Drehmomentsteuerung und Drehzahlsteuerung sind verfügbar.
- ●Eine für die Steifigkeit der Maschine geeignete Steuerung wird durch die vollständigen Software-Servofunktionen wie Linear- / S-Kurvenbeschleunigung und -verzögerung, Vorwärtsschub, Drehmomentsteuerungsfilter, Verstärkerumschaltung bei Abschaltung und geringer Geschwindigkeit, Störungskompensationssteuerung etc. erzielt
- Periphere Geräte, wie Touch Panel, übergeordneter Controller etc. können über serielle Kommunikation angeschlossen werden.
- Spezielle Bearbeitungssoftware kann über USB 2.0 (Full Speed) angeschlossen werden.

Produktbezeichnung Artikel		NCR-DDA0A1A-051D-T08	
Max. Nennst	rom	1,1 Arms	
Max. Stromstärke		3,3 Arms	
		0.15 kVA	
5 5	J	Einzelphase AC 100 \sim 115 V (zulässige Leistungsschwankung AC 90 \sim 121 V) 50/60 Hz \pm 5%	
Steuermetho	ode	Dreiphasen-Sinus-PWM-Methode	
Steuermodu	S	Position (Positionssteuerungsdaten / Impulskette)	
Impulskettenbefehl		Leitungstreiber-System wird unterstützt Die maximale Eingangsfrequenz wird unten angegeben (1) Impuls mit 90 Grad Phasenunterschied: 4 Mpps (16 Mpps nach 4-facher Multiplikation) (2) Richtungsimpuls: 4 Mpps (3) Richtungs- + Schaltimpuls: 4 Mpps	
Befehlsein-	Drehzahlsteue- rungsbetrieb	Analoger Drehzahlbefehl und interner Drehzahlbefehl (3 Punkte)	
gabe	Drehmoment- steuerungsbetrieb	Analoger Drehmomentbefehl und interner Drehmomentbefehl (3 Punkte)	
	Einfache Positio- nierung-Betrieb	3 Positioniermodi: Manueller Modus / "Return-to-Origin"-Modus / Einfache Positionierung-Modus	
		[8 grundlegende Eingangssignalpunkte (ursprünglicher Wert)]	
W . I		Servo an, Reset, Befehlsimpuls-Eingangsunterdrückung, Modusauswahl 1, Modusauswahl 2, Anlauf, Geschwindigkeitsauswahl, Auswahl Drehmoment	
Kontakteing	angssignai	<folgende durch="" eingangssignalen="" fernsteuer-="" oder="" signale="" verwendet="" von="" werden="" zuweisung=""> Notaus, Proportionalsteuerung, Adressangabe, Drehzahlüberlagerung, Abweichung bereinigen, Drehmomen begrenzung, Richtung beim Überfahren der Ursprungsmarkierung sowie nach erfolgter Richtungsumkehr et</folgende>	
		[4 grundlegende Eingangssignalpunkte (Ausgangswert)]	
		Servo bereit, Alarm, Warnung, Positionierung abgeschlossen	
Kontaktausg	angssignal	< Folgende Signale werden durch Zuweisung von Fernsteuer- oder Ausgangssignalen verwendet>	
		Drehmomentbegrenzung, Drehzahl 0, im Drehzahlbedienungsmodus, im Drehmomentbedienmodus, im Modus zur leichten Positionierung, im Impulskettenbedienmodus, Encoder-Marke	
Encoder-Rüc	kführung	Impulskettenausgang mit 90° Phasenverschiebung	
	~	(frequenztrennender Ausgang möglich. Die maximale Ausgangsfrequenz von 2 Signalen der A / B-Phase beträgt 20 Mpps nach 4-facher Multiplikation)	
		Impulsketteneingang mit 90° Phasenverschiebung Die maximale Eingangsfrequenz von 2 Signalen der A / B-Phase beträgt 20 Mpps nach 4-facher Multiplikation	
Monitorausg	jang	(1) Analoger Monitor: 2 Punkte (2 Punkte nach Parameter aus verschiedenen Motion-Status kann überwacht werden (2) Verschiedene Überwachungsarten sind mit der USB-kompatiblen optimierten Bearbeitungs-Software möglich.	
Schutzfunkti	on	IPM-Fehler, Überspannung, Unterspannung, Überdrehung, Überladung, Rückkopplungswiderstandsüberlastung, Abweichungsüberschreitung, Kommunikationsfehler, Datenfehler, CPU-Fehler, Encoderfehler, Fehler automatische Magnetpolerkennung, absoluter Encoderfehler etc.	
Kommunika	tionsfunktion	Verschiedene Daten können über serielle Kommunikation (RS-422A) übertragen / empfangen werden, Eine optimierte Bearbeitungssoftware kann über USB 2.0 (Full Speed) angeschlossen werden.	
, ,	•	0 bis 55 ° C / -20 bis 66 ° C	
Betriebsfeuc	htigkeit	85 %RH oder geringer (kondensfrei halten)	
Vibrationsbe	ständigkeit	0,5 G 10∼55 Hz	
Bedienraum		Höhe von 1000 m oder weniger, Innenraum (kein Schadgas oder Staub)	
	Eingangsleis und Regelkre Steuermethe Steuermethe Steuermodu Befehlseingabe Kontakteinge Kontaktausg Encoder-Rüc Impuls-ausg Encoder-Rüc Impulseinga Monitorausg Schutzfunkti Kommunikat Umgebungs Betrieb / Lag Betriebsfeuc Vibrationsbe	Leistungskapazität Eingangsleistung (Hauptkreis und Regelkreis) Steuermethode Steuermodus Befehlseingabe Impulskettenbefehl Drehzahlsteuerungsbetrieb Drehmomentsteuerungsbetrieb Einfache Positionierung-Betrieb Kontakteingangssignal Kontaktausgangssignal Encoder-Rückführung Impuls-ausgang Encoder-Rückführung Impulseingang Monitorausgang Schutzfunktion Kommunikationsfunktion Umgebungstemperatur bei Betrieb / Lagertemperatur Betriebsfeuchtigkeit Vibrationsbeständigkeit	

11-345

■ Ausführungen für ADVA

■ Anwendbare Modellnummern

Baureihe NT: NT55V, NT80V, NT...XZ, NT...XZH

Baureihe SA: alle Modellnummern

Baureihe LT: alle Modellnummern

- Zusätzlich zum herkömmlichen Impulskettenbefehl wird auch das Hochgeschwindigkeits-Bewegungsnetzwerk EtherCAT unterstützt.
- 10 Eingabeterminals, 6 Ausgabeterminals sowie eine analoge Eingabe (0 bis ±10 V) können mithilfe von intelligenten Terminals gesteuert werden.
- Die hohe Steuerbarkeit verkürzt die Ausregelzeit und erhöht die Produktivität.
- Maschinendiagnose, Anlauf und Anpassung des Linearmotors k\u00f6nnen dank der Parametereinstellungen, Monitordisplay, Bedienverfolgung und automatischem Tuning der Setup-Software einfach durchgef\u00fchrt werden.

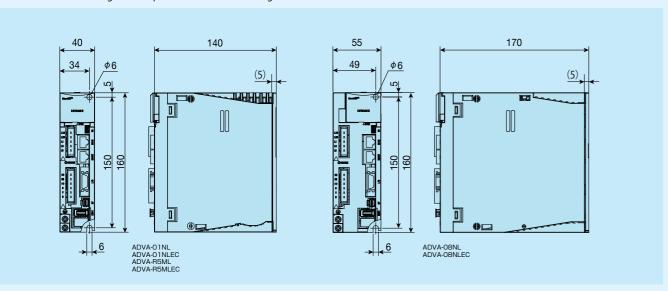
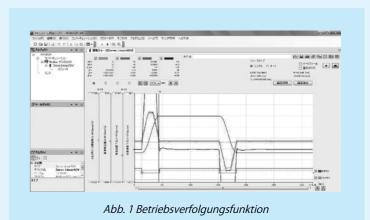


Tabelle 3 Ausführungen für ADVA

	Produktbezeichnung	ADVA-01NL	ADVA-R5ML					
Arti	kel	ADVA-01NLEC	ADVA-08NLEC	ADVA-R5MLEC				
	Eingangsspannung	Einzelphase / Dreipha	Einzelphase AC 100 bis 115 V					
asi	Eingangsspannung	50 / 60 Hz		50 / 60 Hz				
Basisausführung	Nennstromstärke / Kurzzeitige max. Stromstärke	1,2Arms / 3,6Arms	5,1Arms / 15,3Arms	1,2Arms / 3,6Arms				
팔	Leistungskapazität	0,3 kVA 1,3 kVA		0,3 kVA				
ξ	Schutzvorrichtung (1)		Halbgeschlossenes IP20					
	Steuermodus	Positionsr	egler / Geschwindigkeitsregler / Vorschubk					
⊑	Drehzahlbefehl		Geschwindigkeit (Verstärkung einstellbar)	oder EtherCAT				
າga zie	Vorschubkraftbefehl		ax. Vorschubkraft (Verstärkung einstellbar)	oder EtherCAT				
ziehungsfunktion	Positionsbefehl	Leitungstreibersignal: 20 Mpps (nicht-isolie Open Collector-Signal: 2 Mpps (isoliert	erte Eingabe / nach 4-facher Multiplikation) er Eingang / nach 4-facher Multiplikation)	oder EtherCAT				
n Js		[Eingabe] Der intelligente Terminal wählt 10	Eingabeterminals (6 Eingabeterminals für Ethe	erCAT-Ausführung) Funktion nach Parameter				
동 영	Kontakteingang /	DC12 / 24 V Kontaktsignal / Open Collector-Signaleingang (mit interner DC24 V Stromversorgung)						
cio P	-ausgang	[Ausgabe] Der intelligente Terminal wählt 6 Ausgabeterminals (4 Ausgabeterminals für EtherCAT-Ausgabe) Funktion nach Parameter						
ے ہو	99	(Open Collector-Signalausgang: abfallend)						
	Eingebauter	Impulskettenbefehl-Spezifikation: Fünfstellige Zahlenanzeige, fünf Schlüsseltaster / DIP-Schalter (Modbus-Kommunikationseinstellung)						
	Operator	EtherCAT-Ausführung: 2-stellige Ziffernanzeige, DIP-Schalter (Einstellung der Knotenadresse für EtherCAT)						
	Externer Operator	Windows 7/8 (32-bit, 64-bit)-PC kann angeschlossen werden (USB 2.0 Full Speed)						
_	Regenerativer Bremskreis	Eingebaut						
nte	Dynamische Bremse (2)	Eingebaut (Bewegungsbedingung konfigurierbar)						
Interne Funktion		Maximalstrom, Überladung, Bremswiderstandsüberlastung, Überspannung Hauptstromkreis, Speicherfehler, Unterspannung						
TI O		Hauptstromkreis, CT-Fehler, CPU-Fehler 1						
호		Externer Fehler (Motortemperaturfehler), Servo AN Erdschlusserkennung, Unterspannung Regelkreis, Temperaturfehler						
Ĝ .	Calcustations lating	Servoverstärker, Fahrunterdrückungsfehler, Strommodulfehler, Sicherheitskreisfehler, Notaus, Encoderfehler, Versatzfehlei						
Š	Schutzfunktion	Stromreaktivierungsanforderung, Fehler bei Einschätzung der Position des Magnetpols, Einschätzung der Position de						
		netpols nicht ausgeführt, Position Sollwertabweichung, Drehzahlabweichungsfehler, Überdrehungsfehler, kurzzeitiger						
		Stromausfall, Fehler Stromversorgung Hauptkreis, Aussteuerfehler						
		(Netzwerkkommunikationsfehler, DC-Synchronisierungsfehler, Unterspannungsanzeige)						
	Umgebungstemp. b. Betrieb /	(1.6.211.61111.61111.61	, , , , , , , , , , , , , , , , , , ,	nerspannangsanzerge,				
gebung	Lagertemp. (3)		0 ~ 55℃ / −10 ~ 70℃					
etriebsur gebung	Betriebsfeuchtigkeit		20 bis 90 % RH (kondensfrei halten)					
sur ng	Vibrationsbeständigkeit ∅		5,9 m/s ² (0,6 G) 10 bis 55 Hz					
Į.	Bedienraum		000 m oder weniger, innen (kein Schadgas					
	Masse	0,7 kg	1,2 kg	0,7 kg				

Hinweise (1) Schutzmethode ist JEM1030-konform.

- (2) Für Notaus dynamische Bremse verwenden
- (3) Die Lagertemperatur gibt die Temperatur beim Transport an.
- (4) JIS C60068-2-6:2010-konform.


Setup-Software

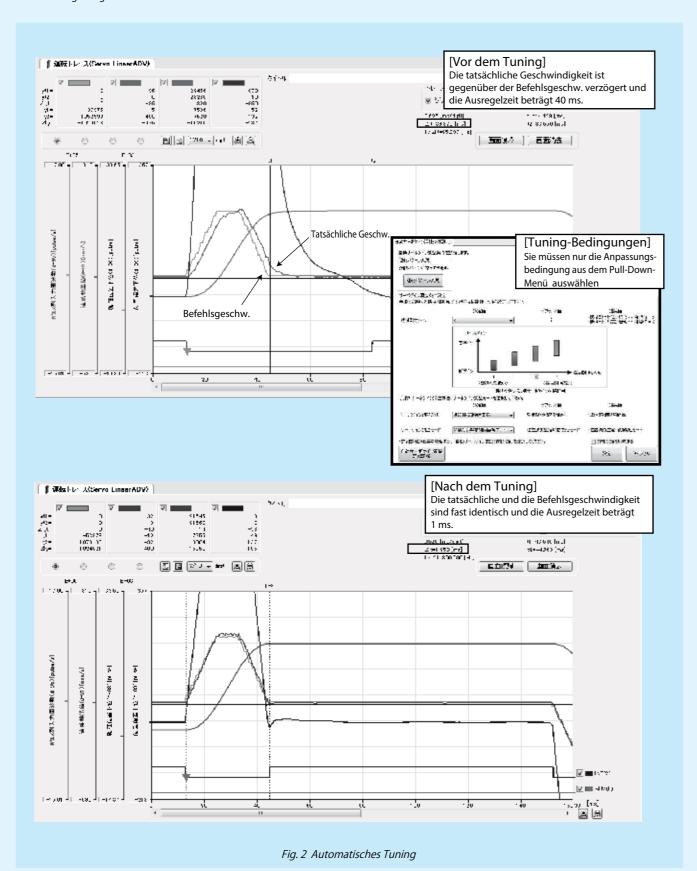
- Zum Einstellen, Referenzieren, Ändern, Ausdrucken und Speichern der Treiberparameter.
- Ermöglicht Echtzeit-Überwachung des Betriebs- und Ausgangsstatus.
- Gibt Geschwindigkeit und Stromstärke etc. in Tabellen an.
- Unterstützt Inbetriebnahme und Verstärkungs-Tuning

Tabelle 4 Betriebsumgebung der Setup-Software

Tuberie : Betriebburrigeburrig u.e. Betup Bertriare					
Artikel	Betriebsbedingungen				
	CPU: Pentium 4 1.8 GHz oder höher				
PC	Freier Speicherplatz auf der HDD: 1 GB oder mehr				
	Displayauflösung: 1024x768 oder höher empfohlen				
	Windows Vista 32-bit SP1				
OS	Windows 7 (32-bit, 64-bit)				
	Windows 8 (32-bit, 64-bit)				
A 1 140 1 00 1 1 1 1 1 1 1 1 1 1 1 1 1 1					

Anmerkung: Windows* ist ein eingetragenes Warenzeichen der Microsoft Corporation in den USA und anderen Ländern.
Pentium ist ein eingetragenes Warenzeichen in den USA und anderen Ländern.

11-348


Funktion Automatisches Tuning

Durch Verwenden der Funktion Automatisches Tuning der Setup-Software für ADVA, können auch Laienanwender einfach eine hochgenaue Verstärkungsanpassung durchführen.

<Betriebsbedingungen>

Tisch: NT55V25/05R + ADVA-01NL/NT55V25

Belastung: 200g Geschwindigkeit: 500 mm/s Positionierung vollständige Breite: $\pm 5\,\mu\,\text{m}$ Verfahrweg: 10 mm Beschleunigungs-/ Verzögerungsdauer: 12 ms

MR-J4

■ Ausführungen für MR-J4

- Anwendbare Modellnummern
 Baureihe NT: NT55V, NT80V
 Baureihe SA: alle Modellnummern
- Unterstützt SSCNET III/H (serieller Hochgeschwindigkeits-Bus).
 Durch das optische Kommunikationssystem werden eine höhere Geschwindigkeit und Genauigkeit erzielt.
- Servo-Verstärkungsanpassung, einschließlich Filter für Maschinenresonanzunterdrückung, fortgeschrittene Vibrationskontrolle II und robustem Filter, kann durch Einschalten der One-Touch-Tuning-Funktion abgeschlossen werden. Einfacher Antrieb der modernen Vibrationsunterdrückungsfunktion ermöglicht beste Leistung.
- Maschinendiagnose, Anlauf und Anpassung des Linearmotors können dank der Parametereinstellungen, Monitordisplay, Maschinen-Analyzer der Setup-Software (MR Configurator2) einfach durchgeführt werden.

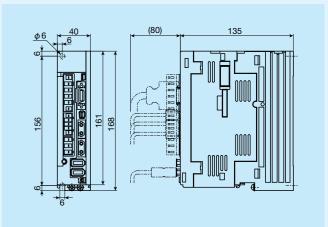


Tabelle 5 Ausführungen für MR-J4

Artikel		Produktbezeichnung	MR-J4-10B-RJ		
Artikei		Nennspannung	Dreiphasen AC170V		
	Ausgang	Nennstrom	1,1 A		
	Channel	Spannung / Frequenz	Einzelphase / Dreiphase AC200-240V 50/60 Hz		
	Stromver- sorgung	Zulässige Leistungs- fluktuation	Einzelphase / Dreiphasen AC170-264V		
	Hauptkreis	Zulässige Frequenz- fluktuation	Innerhalb von ± 5 %		
Basisausfüh- rung		Spannung / Frequenz	Einzelphase AC200-240V 50/60 Hz		
J	Stromver- sorgung	Zulässige Leistungs- fluktuation	Einzelphase AC170-264V		
	Regelkreis	Zulässige Frequenz- fluktuation	Innerhalb von ± 5 %		
		Stromverbrauch	30 W		
	Stromversorg	jung für Schnittstelle	DC24V \pm 10% (erforderliche Stromkapazität: 0,3 A (einschließlich CN8-Anschlusssignal))		
	Struktur (Schutzklasse)		Luftselbstkühlung und Öffnung (IP20)		
	Steuermethode		Sinuswellen-PWM-Steuerung/Methode der Stromstärkensteuerung		
	Maschinen und Encoder-Schnittstelle		Mitsubishi serielle Hochgeschwindigkeits-Kommunikation / ABZ-Phase Differentialeingangssign		
Eingabe-/Aus-	Encoder-Aus	gangsimpuls	Unterstützt (ABZ-Phasenimpuls)		
gabefunktion	Analoger Moi	nitor	2ch		
	Kommunikationsfunktion		USB: Verbindung mit PC etc. (MR Configurator2 wird unterstützt)		
	Dynamische Bremse		Eingebaut		
Interne Funktion	Schutzfunktion		Maximalstromabschaltung, Rückkopplungs-Überspannungsschutz, Überlastungsschutz (elektro thermisch), Servomotor-Überhitzungsschutz, Encoder-Fehlerschutz, Rückkopplungsfehlerschut Unterspannungsschutz, Schutz vor kurzzeitigem Stromausfall, Überdrehzahlschutz, weiterführe der Fehlerschutz, sichere Magnetpol-Erfassung, linearer Servo-Steuerungsfehlerschutz		
	Umgebungst	emperatur	0 bis 55° C (vor Frost schützen), Lagerung: 20 bis 65° C (vor Frost schützen)		
Betriebsumge-	Umgebungsf	euchtigkeit	90 %RH oder geringer (kondensfrei halten), Lagerung: 90 %RH oder geringer (kondensfrei halten)		
bung	Atmosphäre		Innen (keinem direkten Sonnenlicht aussetzen), frei von Schadgas, entflammbarem Gas, Ölnebel und Staub		
	Höhe		1 000m oder weniger		
	Vibrationsbes	tändigkeit	5,9 m/s² oder weniger, 10 Hz bis 55 Hz (X-, Y-, Z- Richtungen)		
Masse			0,8 kg		

NCD

■ Ausführungen für programmierbare Steuereinheit NCD171G für Baureihe LT

- Programmierbarer Controller and Servotreiber werden in einer kompakten Einheit vereint.
- Diese Einheit benötigt weniger Verbindungskabel, wodurch die Anzahl an Arbeitsstunden für die Verkabelung stark reduziert wird.
- Eine einzelne Eingabeeinheit reicht für den Betrieb mehrerer Achsen aus.
- DC24V-Stromversorgung für externes I/O und Sensor sind in der Einheit eingebaut.
- Eingebaute I/O-Sequenzfunktion benötigt, wenn das System nicht komplex ist, keinen Sequenzer.

 10(15)
- $\bullet \ \text{Versch. Pr\"{u}ffunktionen erm\"{o}glichen einfachere \"{U}berpr\"{u}fung des externen I/O-Anschlusses}.$
- Das Programm ist in leicht verständlicher Befehlssprache verfasst, was Sie dabei unterstützt, ein Programm zu erstellen.
- Für das Speicher-Backup wird ein Flashspeicher verwendet, weshalb Sie die Batterie nicht wechseln müssen.
- Die Überwachung und Begrenzung der Vorschubkraft während der Bewegung ist möglich.
- Eine Eingabeeinheit ist als zusätzliches Speichergerät erhältlich.
- Verschiedene "Return-to-Origin "-Methoden ermöglichen einen "Return-to-Origin "-Betrieb ohne Anbringen eines externen Sensors.
- Die Verwendung der RS232C-Schnittstelle ermöglicht den Anschluss an einen PC.
- Konformität mit CE-Markierung (Niederspannungssteuerung und EMC-Steuerung) ist bestätigt.

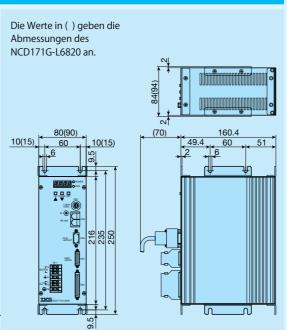
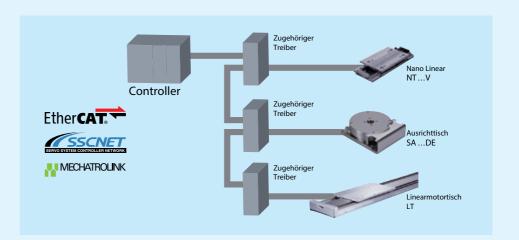


Tabelle 7 Ausführung der programmierbaren Steuereinheit

Artikel		Produktbezeichnung	NCD171G-L2620 NCD171G-L6820			
		l der Steuerachsen	Eine A	Achse		
	Anwer	ndbarer Linearmotor	LT100CE, LT150CE, LT130LD, LT170LD	LT170H		
Steue-	Feedb	ack	Inkremental-Linear Encoder			
rungsaus-	Auflös		0,1 μm, 0,5 μm und 1,0 μm			
führung	Be-	Positions- Extern	+ Richtung/- Richtungsimpuls, Positionsbefehlimpuls/F			
rumung	fehl-	steuerung Programm	±2147483647 Impuls (r	maximaler Befehlswert)		
	sein- gabe	, ,	\pm 10V/Nenngeschwindigkeit (variabel nach Parameter) Auflösung 10V/372 Interpolation			
	Eingab	emethode	MDI, Eingabe und PC-	Eingang über RS232C		
	Typ de	r Befehlseingabe	Absoluter Befehl oder	inkrementeller Befehl		
Program-		mmkapazität	11K Byte (1100 Sc	·		
mausfüh-	Anzah	l der Positionierpunkte	512 Pc			
rung	Funktion		Sprung, Aufruf, Wiederholung, Drehzahleinstellung, Beschleunigungs-/Verzögerungseinstellung, Timersteu- erung, I/O-Steuerung, Eingangsbedingungsverzweigung, verschiedene Editierfunktionen (Erstellen, Löschen, Streichen, Einfügen etc.)			
		Anzahl Eingangspunkte	LS-Eingang: 3 Punkte, I/O-Eingang: 20 Punkte			
A 6111	Ein- gang	Steuereingang	Ein, Aus, Notaus, manueller Betrieb Bewegung in +/- Richtung, "Return-to-Origin ", Zurücksetzen Alarm, Zurücksetzen Abweichungszähler, Servosteuerung, Unterbrechung etc. (Zuweisung zu I/O-Eingang nach Parametern)			
Ausfüh-		Eingabemethode	Optokoppler mit bidirektionalem Eingang (spannungsfreier Kontakt, offener Kollektor und offener Emitter werden unterstützt.			
rung		Anzahl Ausgangspunkte	I/O-Ausgang 12 Punkte			
Eingang/ Ausgang	Aus- gang	Betriebsausgang	Im automatischen Betrieb, Grenzbestätigung, Notaus, "Return-to-Origin" abgeschlossen, betriebsbereit, Alarm, Positionierung abgeschlossen, Vor-Referenzsensor (Zuweisung an I/O-Ausgang nach Parametern)			
		Ausgangsart	Open Emitter-Ausgang (Max. offene / gebrückte Spannung: 30V Maximaler Ladungsstrom: 100 mA)			
	Eingangs- & Ausgangsspannung		DC24V ± 5% 500 mA			
Schutzfunk	tion		Maximalstrom, Überspannung, Überladung, Spannungsabfall, Encoderfehler, Abweichungsfehler, Überhitzung Rückkopplungswiderstand, CPU-Fehler etc.			
Andere wic	Andere wichtige Funktionen		RS232C (lesen, schreiben, direkt ausführen etc.), Software-Limit, Vorschubkraftbegrenzung, Vorschub- kraftüberwachung, Drehzahlsteuerung beim Fahren, LS Logik ändern, verschiedene Prüffunktion			
	Spann	ung Hauptstromversorgung	Einzelphase AC200~230	V±10% (¹) 50/60 Hz		
Allgemeine	Dauerr	nennstrom	0,6 Arms	2,4 Arms		
Ausfüh-	Max. S	tromstärke	4,7 Arms	15,0 Arms		
rung		bungstemperatur	0 bis 40 ° C Lagero			
rung		bungsfeuchtigkeit	35 bis 85 % RH (kc			
	Maßna	hme gegen Stromausfall	Flashspeicher (Batteriew			
Masse			Tisch: 1,7 kg	Tisch: 1,9 kg		
			Eingabeeinheit: 0,5 kg	Eingabeeinheit: 0,5 kg		

Hinweis (¹) Sollten Sie die AC100V-Ausführung für NCD171G-L2620 benötigen, kontaktieren Sie bitte **IKU**.

CE-Markierung


Die CE-Markierung der programmierbaren Steuereinheit basiert auf der Konformitätsbestätigung mit dem folgenden Evaluationsstandard. Niederspannungsbefehl: EN50178

EMV-Befehl: EN 55011 Gr 1 Klasse A and EN 61000-6-2

Konformität mit EMV-Befehl wurde in unserer ausgewählten Systemkonfiguration bestätigt. Wenn die Einheit in eine Maschine oder ein Gerät eingebaut wird, können sich die Verdrahtungs- und Installationsbedingungen verändern, weshalb für die Konformität mit dem EMV-Befehl in der Maschine oder dem Gerät die Messung der fertigen Maschine / des fertigen Geräts mit eingebautem LT erforderlich ist.

Motion-Netzwerk

Treiber für Linearmotorantriebe umfassen solche Treiber, die das Motion-Netzwerk EtherCAT, SSCNET III/H und MECHATROLINK unterstützen. Das Motion-Netzwerk erzielt eine höhere Leistung und höhere Genauigkeiten der Geräte ohne Impulsfrequenzbeschränkung beim Impulskettenbefehl, Störeffekte beim Analogbefehl (Spannungsbefehl), Spannungsabfall aufgrund der Kabellänge und der Effekte von Temperaturunterschieden. Die Verdrahtung kann ebenfalls reduziert werden, so dass ein Synchronisationssystem mit mehr als einem Tisch leicht erzielt werden kann.

Modell	Eigenschaften
EtherCAT	Ein auf Ethernet basierendes offenes Netzwerk-Kommunikationssystem, das von Beckhoff in Deutschland entwickelt wurde und eine Echtzeit-Steuerung ermöglicht. Dank der Hochgeschwindigkeitskommunikation und einer hochgenauen Synchronisierung zwischen den Knoten wird eine höhere Leistung und eine höhere Genauigkeit der Geräte erzielt. Außerdem können auf dem Markt erhältliche Ethernet-Kabel verwendet werden und verschiedene Verdrahtungsarten werden unterstützt.
SSCNET III/H	Ein Motion-Netzwerk-System für die Servo-Systemsteuerung, das von der Mitsubishi Electric Corporation entwickelt wurde. Es verwendet Glasfaserkabel, weshalb die Störsicherheit gegenüber herkömmlichen SSCNET verbessert ist.
MECHATROLINK	Die Open Field-Netzwerkkommunikation, die den Controller und verschiedene Komponenten verbindet. Entwickelt von der Yaskawa Electric Corporation und verwaltet von der MECHATROLINK Members Association.

IIC Programmierbarer Controller

CTN481G (RoHS-konform)

IKU Ein programmierbarer Controller ist ein Controller für Positionierungen mit hoher Funktionalität und einfacher Bedienbarkeit. Der Typ CTN481G ist ein hochwertiges Modell mit zusätzlichen Funktionen und ist mit herkömmlichen CTN480G-Produkten kompatibel. Da die äußeren Abmessungen, Montagemaße und Anschlussausführungen identisch mit denen der herkömmlichen CTN480G-Produkte sind, kann das Modell CTN480G einfach ersetzt werden.

Treiber und Verbindungskabel von herkömmlichen CTN480G-Produkten können verwendet werden. Für Informationen hinsichtlich der Abmessungen, wenden Sie sich bitte an IKU

- ①Hochfunktionsmodell, welches das Programmieren einer Eingabe von bis zu 10000 Schritten ermöglicht.
- ②Sowohl eine hohe Geschwindigkeit als auch eine hohe Auflösungssteuerung werden durch eine Hochgeschwindigkeitsimpuls-Ausgabe von bis zu 8 Mhz erzielt.
- ③Linearinterpolation von vier Achsen und Kreisinterpolation von zwei Achsen sind als Standardfunktionen erhältlich.
- 4) Positionskorrektursteuerung durch den Linear Encoder wird unterstützt.
- ⑤Daten können über auf dem Markt erhältliche USB-Speicher gespeichert und übertragen werden.
- ⑥Durch Verwendung einer integrierten I/O Sequenzfunktion, Timer, Zähler und Berechnungsfunktion kann ein System leicht ohne Sequenzer konfiguriert werden.
- ⑦Da die USB 1.1 Schnittstelle standardmäßig enthalten ist, sind Dateibearbeitung, Controller-Bedienung und das direkte Ausführen vom PC mithilfe von dedizierten Befehlen möglich.
- ® Da Absolut-Encoder von YASKAWA ELECTRIC CORPORATION, Panasonic Corporation und Mitsubishi Electric Corporation unterstützt werden, ist der "Return-to-Origin"-Betrieb beim Anlauf nicht erforderlich.
- $@ Die \ Synchronisationssteuerungsfunktion \ erm\"{o}glicht\ das\ simultane\ Ausf\"{u}hren\ und\ Ausschalten\ von\ 2$ Achsen (Steuerung einer Portalanordnung ist möglich).
- Multi-Tasking-Funktion ermöglicht das gleichzeitige Ausführen von bis zu 5 Programmen.
- @Sie können die Steuerung der Positioniergenauigkeit durch vorherige Eingabe der Positionierungskorrekturdaten korrigieren.
- [®]Die achsenbezogene Eingangs- / Ausgangsfunktion erleichtert die Verdrahtung mit dem Treiber.
- [®]Bis zu 4 Controller (Sechzehn-Achsen-Steuerung) können über eine RS485-Verbindung verbunden werden.
- [®]Da die RS422-Schnittstelle standardmäßig enthalten ist, können im Handel erhältliche LAN-Kabel verwendet werden und die optimierte Verdrahtung durch ein Touch Panel oder Sequencer-Datenkommunikation werden ermöglicht.
- ®Mit optionalen Einheiten werden optimierte Verdrahtungssysteme, die auf MECHATROLINK, SSCNET III/H und EtherCAT zurückgreifen, unterstützt.

Funktionen und Leistung

Tabelle	1	Funktionen	und	Leistung

Artikel		Modell	CTN481G
A C''1	Anzahl Steuerachsen		Vier Achsen (gleichzeitig durchführbar)
Ausführung Befehls-	Max. Bet	fehlsebene	±2147483647 Impulse (gezeichnete (?) 32-Bit Länge)
impuls-	Max. Ausgangsfrequenz		8 MHz
	Beschl/Verzdauer		0 bis 65,533 sek (linear / zykloid / S Beschleunigung/Verzögerung)
ausgang	Ausgangsart		CW/CCW-Richtungsimpuls, Richtungsbefehl / Vorwärts- und Rückwärtsimpuls sowie Impuls mit 90 Grad Differenz
	Eingabe	emethode	MDI, Eingabe und PC-Eingang über USB
	Befehlse	ingangsart	Absoluter Befehl oder inkrementeller Befehl
Programm-	Program	mkapazität	10 000 Schritte
ausführung	Fur	nktion	Sprung, Aufruf, 4 arithmetische Berechnungsarten, Logikfunktion, Drehzahleinstellung, Beschleunigungs-/ Verzögerungseinstellung, Timersteuerung, I/O-Steuerung, Eingangsbedingungsverzweigung und verschiedene Editierfunktionen (erstellen, löschen, streichen, einfügen und kopieren etc.)
			LS-Eingang 16 Punkte
		Anzahl	Spezifische Eingabe 16 Punkte
		Eingabe-	Universaleingang 20 Punkte (erweiterbar auf bis zu 80 Punkte)
	Eingabe	punkte	Start, Stopp, Notaus, manueller Vorwärts- / Rückwärtslauf, "Return-to-Origin", Aktuelle Position zurücksetzen, Unterbrechen, Positionierung abgeschlossen und Treiber arm-Eingabe etc. (Durch universale Eingangsparameter ausgewählt und zugewiesen)
Ausführung		Eingabe- methode	Optokoppler-Eingang (spannungsfreier Kontakt oder Open Collector-kompatibel)
Eingang/		Ausgangs-	Spezifischer Ausgang 28 Punkte
Ausgang		punkte	Universalausgang 20 Punkte (kann auf bis zu 80 Punkte erweitert werden)
	Ausgang	Betriebs-	Automatischer Betrieb, Limit-Sensor-Erkennung, Notaus, Impulsausgabe, "Return-to-Origin" abgeschlossen Servo an, Treiberalarm
		ausgang	zurücksetzen, Proportionalsteuerung, Abweichungszähler leer (Durch universale Eingangsparameter ausgewählt und zugewiesen)
		Ausgangsart	Open Collector-Ausgang (DC30V; 100 mA; MAX)
	9	angs- &	Für I/O, DC24V 4 A
		sspannung	Für Limit, DC24V 100 mA
Kommunikation mit externen		externen	USB1.1 (Anschlusstyp Mini-B)
Geräten			RS422 (Anschlusstyp RJ-45)
Dateispeicherung		ing	USB1.1 (Anschlusstyp A)
Andere wichtige Funktionen		nktionen	USB serielle Kommunikation (Lesen, Schreiben und direktes Ausführen von Daten etc.), Speicher und Transfer von Daten über im Handel erhältliche USB-Speicher, Positionskorrektur durch lineare Skala, Umkehrspielkorrektur, Software-Limit, Ändern der Sensorsignallogik, Vier-Achsen-Linearinterpolation, Zwei-Achsen-Kreisinterpolation und Prüffunktionen (I/O-Monitor, Limit-Sensor-Monitor und Abschaltungsbedingungsmonitor) etc.

Tabelle 2 Allgemeine Ausführung

Modell Artikel	CTN481G
Spannung Stromversorgung	DC24V ±10%
Max. Stromverbrauch	4.5A
Umgebungstemperatur	0~50 °C Lagerung -10~60 °C
Umgebungsfeuchtigkeit	20~85% RH(kondensfrei halten)
Maßnahme gegen Stromausfall	Flash-Speicher
Masse (Ref.)	Tisch : 1,2 kg Eingabeeinheit : 0,5 kg I/O Add-in-Einheit : 0,4 kg

Anmerkung: Modellnummer der optimierten Eingabeeinheit (getrennt erhältlich) ist TAE10M5-TB.

Außenabmessungen von CTN481G

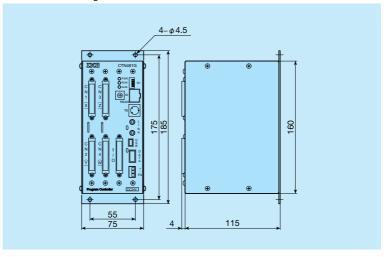


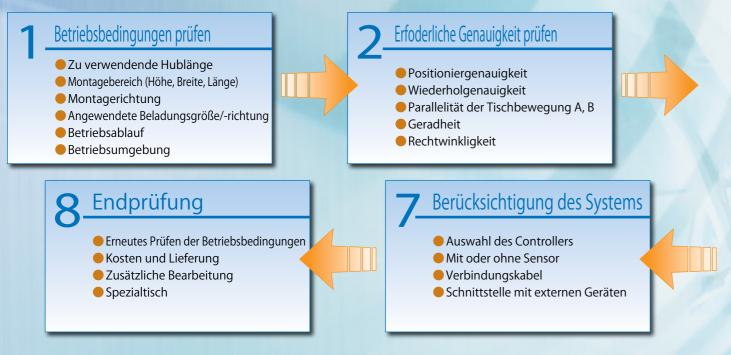
Tabelle 3 Liste des Zubehörs von CTN481G

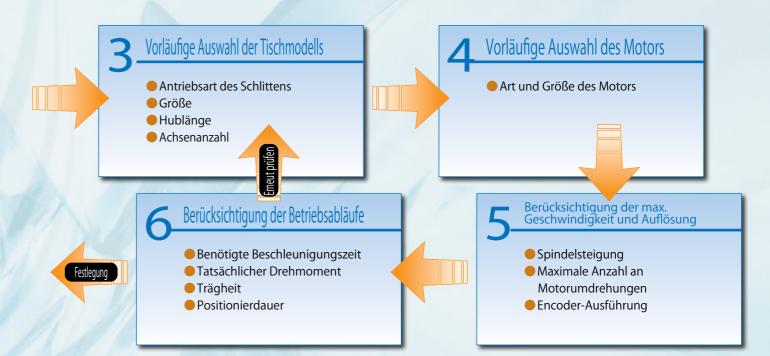
Art	Modell	Anzahl	Anmerkung
I/O-Anschluss	10150-3000PE (Stecker)	1	Sumitomo 3M Limited
I/O-Alisciliuss	10350-52Y0-008 (Abdeckung)	1	Sumitomo Sivi Elimited
Stromversorgungsanschluss	XW4B-03B1-H1	1	OMRON Corporation
	4832,1310	2	Schurter AG
Link-Verbindung	CFS1/4C101J (Anschlusswiderstand)	1	KOA Corporation
DIN-Schiene	DRT-1	1	TAKACHI ELECTRONICS ENCLOSURE CO., LTD.
Montageteile	Bind M3×4 (Befestigungsschraube)	4	_

Tabelle 4 Optionale Artikel

Art	Modell	Anmerkung		
Eingabeeinheit	TAE10M5-TB			
I/O Add-in-Einheit:	TAE10M6-KB	Hinzufügen von 40 Eingangspunkten und 40 Ausgangspunkten (bis zu zwei Einheiten können hinzugefügt werden)		

II-355 1mm=0,03937 Zoll

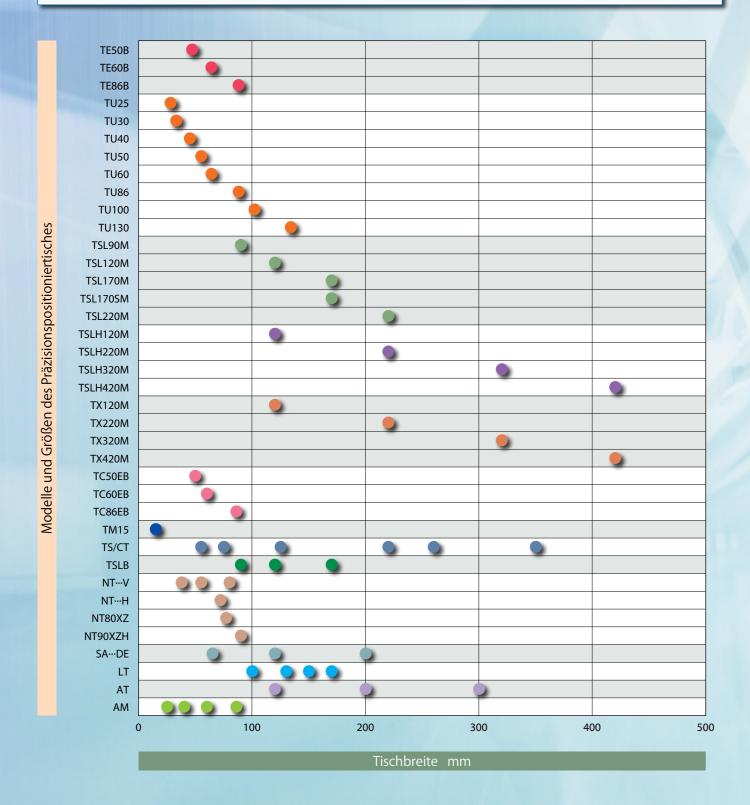

Allgemeine Erläuterung


III-1

IX Auswahl des Präzisions-

Positioniertisches

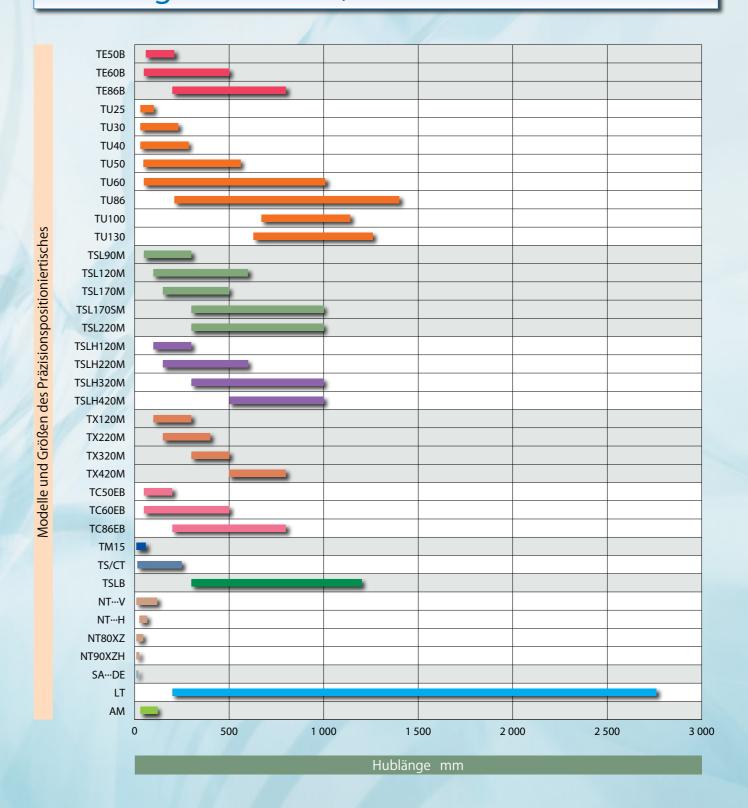
IKI Präzisionspositioniertische sollten nach sorgfältiger Berücksichtigung der erforderlichen Bedingungen ausgewählt werden. Im Folgenden sehen Sie ein typisches Auswahlverfahren.



IK Eigenschaften eines Präzisionspositioniertisches

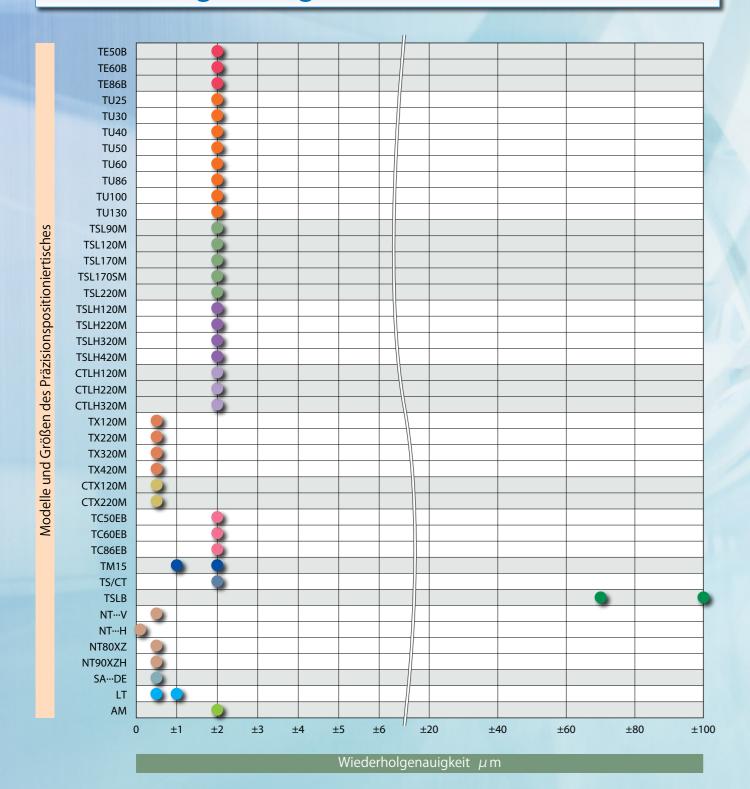
Baureihe	Modell	Hublänge mm	Wiederhol- genauigkeit	Positionier- genauigkeit	Hohe Geschwindigkeit	Steifigkeit
Präzisionspositioniertisch TE	ТЕВ	50 ∼ 800	0	0	0	0
Präzisionspositioniertisch TU	TU	30 ~ 1 400	0	0	0	0
Präzisionspositioniertisch L	TSL···M	50 ∼ 1 000	0	0	0	\circ
Dräzisionspositioniortisch III	TSLHM	100 ∼ 800	0	0	0	0
Präzisionspositioniertisch LH	CTLHM	100 ~ 500	0	0	0	0
Super-Präzisionspositioniertisch TX	TX···M	100 ∼ 800	0	0	0	
Super-Frazisionspositioniertisch 17	CTXM	100 ~ 400	0	0	0	0
Reinraum-Präzisionspositioniertisch TC	ТС…ЕВ	50 ∼ 800	0	0	0	\triangle
Mikro-Präzisionspositioniertisch TM	TM	10~ 60	0	0	\triangle	\triangle
Dräzisionsnositioniortisch TS/CT	TS	25 ~ 250	0	0	\triangle	\triangle
Präzisionspositioniertisch TS/CT	СТ	15 ~ 250	0	0	\triangle	\triangle
Präzisionspositioniertisch LB	TSLB	300 ∼ 1 200	\triangle	\triangle	0	\circ
Nano Linear NT	NT···V, XZ, XZH	10~ 120	0	\triangle	0	\triangle
Natio Litteal N1	NT···H	25 ~ 65	0	0	0	\circ
Ausrichttisch SA	SADE/X	10 ~ 20	0	\triangle	0	\triangle
	LTCE	200 ~ 1 200	0	\triangle	0	\triangle
Linearmotor LT	LTLD	240 ~ 2760	0	Δ	0	0
	LTH	410 ~ 2670	0	Δ	0	0
Ausrichtmodul AM	AM	30 ∼ 120	0	0	0	\bigcirc

Antriebsart	Verwend. Motor	Mit o. ohne Sensor	Linear-Wälzkörperführung	Anwendungen
C-Lube-Spindel		A l. l	Kugelumlaufführung mit U-förmiger Schiene und C-Lube	Montagemaschine, Verarbeitungsmaschine, Messausrüstung
Spindel	AC-Servomotor/	Auswahl	Kugelumlaufführung mit U-förmiger Schiene	Montagemaschine, Verarbeitungsmaschine, Messausrüstung
	Schrittmotor			Montagemaschine, Verarbeitungsmaschine, Messausrüstung
C-Lube-		standard- mäßig	C-Lube Kugelumlaufführung von 2 Führungen	Präzisions-Verarbeitungsmaschine, Präzisions-Messausrüstung Werkzeugmaschine, Montagemaschine
Spindel	AC-Servomotor	enthalten	C-Lube-Rollenumlaufführung Parallele Anordnung von 2 Führungen	Präzisions-Verarbeitungsmaschine, Präzisions-Messausrüstung Werkzeugmaschine, Montagemaschine
			Kugelumlaufführung mit U-förmiger Schiene	Halbleitergeräte, LCD-Geräte
	AC servomotor/	servomotor/ chrittmotor	Kugelumlaufführung Parallele Anordnung von 2 Führungen	Präzisions-Messausrüstung, Montagemaschine
Spindel	Schrittmotor		Kreuzrollenführung mit Käfigzwangsführung Kreuzrollenführung	Präzisions-Messausrüstung, Prober Bildverarbeitungsmaschine, Belichtungsmaschine
Zahnriemen	Schrittmotor		Kugelumlaufführung Parallele Anordnung von 2 Führungen	Hochgeschwindigkeitsförderer, Palettenwechsler
			C-Lube Kugelumlaufführung Parallele Anordnung von 2 Führungen	Halbleitergeräte, Medizingeräte
		standard-	Kreuzrollenführung mit Käfigzwangsführung	Halbleitersysteme, Präzisionsmessgeräte
AC Linear-Servomotor		mäßig		Halbleitergeräte, Medizingeräte
AC LINEAT-SEL	vomotor	enthalten	C-Lube Parallele Anordnung von 2 Führungen Kugelumlaufführung	Halbleitergeräte, Hochgeschwindig- keitsförderer
Spindel	AC-Servomotor/Schrittmotor		Kugelumlaufführung mit U-förmiger Schiene	Halbleitergeräte, LCD-Geräte


Größe des Präzisionspositioniertisches

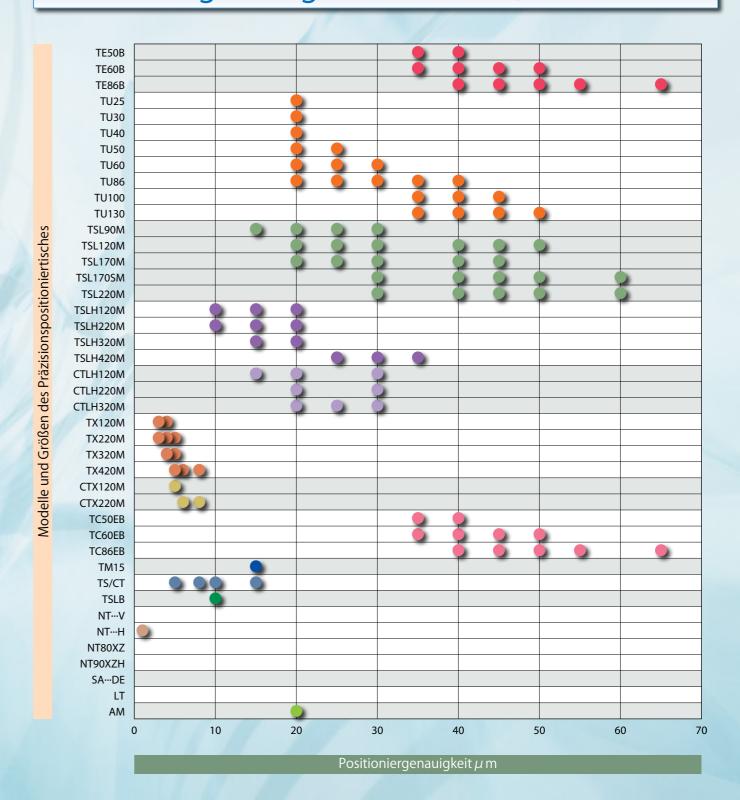
Anmerkungen zur obenstehenden Abbildung

• Die Werte in der Abbildung dienen als Referenz. Details finden Sie in der Beschreibung jedes Modells.


Hublänge des Präzisionspositioniertisches

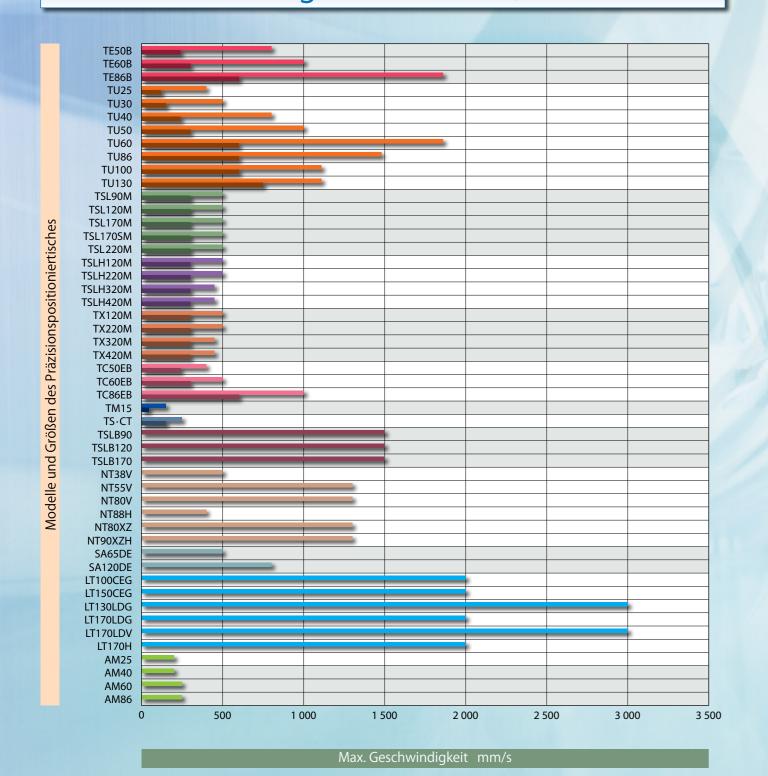
Anmerkungen zur obenstehenden Abbildung

- Die Werte in der Abbildung dienen als Referenz. Details finden Sie in der Beschreibung jedes Modells.
- Die Balkenlänge stellt den standardisierten Hubbereich dar.


Wiederholgenauigkeit des Präzisionspositioniertisches

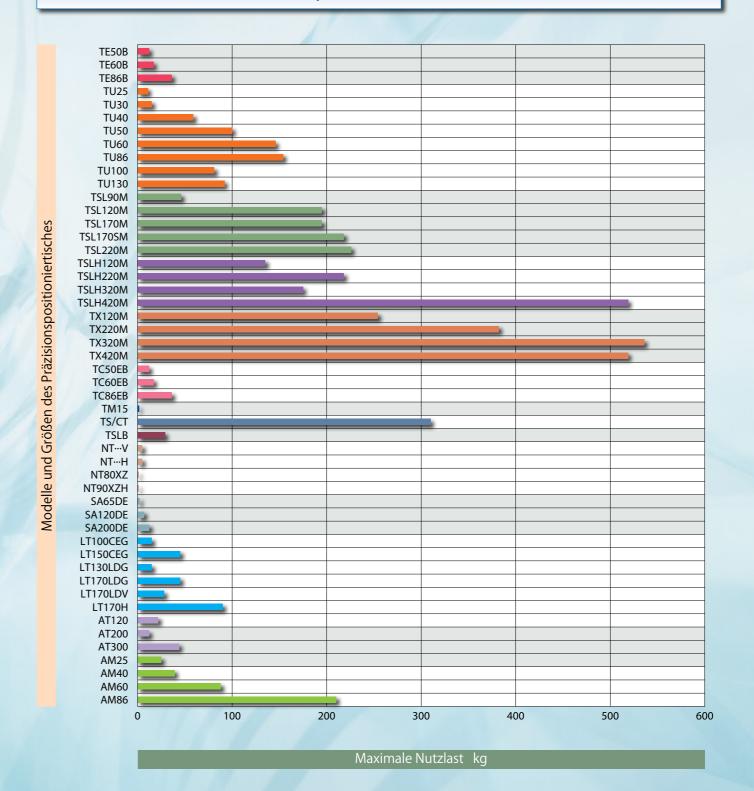
Anmerkungen zur obenstehenden Abbildung

- Die Werte in der Abbildung dienen als Referenz. Details finden Sie in der Beschreibung jedes Modells.
- Bei Modellen mit Spindelantrieb wird der Wert der ausgewählten geschliffenen Spindel angegeben.
- Wenn zwei oder mehr Werte für ein Modell angegeben werden, bedeutet dies, dass der anwendbare Wert von der Hublänge abhängt.
- Für TU wird der Wert für den Standardtisch angegeben.
- CTLH···M, CTX···M und CT sind Tische in Ausführung mit zwei Achsen.
- SA…DE gibt die Werte der X-Achse an.


Positioniergenauigkeit des Präzisionspositioniertisches

Anmerkungen zur obenstehenden Abbildung

- Die Werte in der Abbildung dienen als Referenz. Details finden Sie in der Beschreibung jedes Modells.
- Bei Modellen mit Spindelantrieb wird der Wert der ausgewählten geschliffenen Spindel angegeben.
- Wenn zwei oder mehr Werte für ein Modell angegeben werden, bedeutet dies, dass der anwendbare Wert von der Hublänge abhängt.
- Für TU wird der Wert für den Standardtisch angegeben.
- CTLH···M, CTX···M und CT sind Tische in Ausführung mit zwei Achsen


Max. Geschwindigkeit des Präzisionspositioniertisches

Anmerkungen zur obenstehenden Abbildung

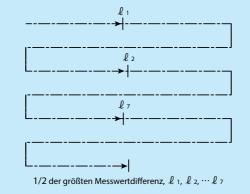
- Die Werte in der Abbildung dienen als Referenz. Details finden Sie in der Beschreibung jedes Modells.
- Für Modelle und Spindelantrieb wird der Wert mit der größtmöglichen Spindelsteigung angegeben.
- Die oberen Abschnitte geben die Werte des AC-Servomotors an, wohingegen die unteren Abschnitte die Werte der Ausführung mit Schrittmotor angeben.
- Der Spindeltyp ist abhängig von der maximal möglichen Spindeldrehzahl und der Hublänge.

Nutz ast des Präzisionspositioniertisches

Anmerkungen zur obenstehenden Abbildung

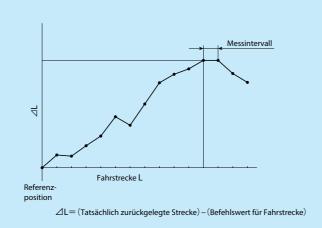
- Die Werte in der Abbildung dienen als Referenz. Details finden Sie in der Beschreibung jedes Modells.
- Die Werte für LT, NT···V, NT···H, NT···XZ, NT···XZH und SA···DE geben die maximalen Nutzlasten an.

Genauigkeit


Die Genauigkeitsstandards des Präzisionspositioniertisches variieren je nach Modell und Messmethoden und werden unten beschrieben. Zusätzlich können auf Nachfrage Modellprüfungen, wie bspw. Dynamiktests, gemäß den Verwendungsbedingungen durchgeführt werden. Für genauere Angaben, bitte **IKO** kontaktieren.

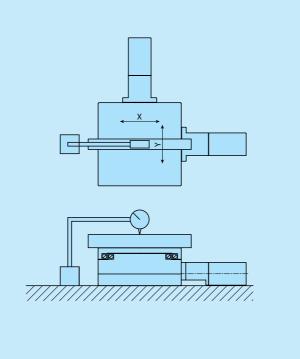
Präzisionspositioniertische werden mit einem Prüfprotokoll hinsichtlich des Genauigkeitsstandards jedes Modells geliefert.

Wiederholgenauigkeit


Wiederholen Sie die Positionierung aus einer Richtung 7 mal, um die Halteposition zu messen und die 1/2 der maximalen Lesedifferenz zu erhalten.

Führen Sie diese Messung im Zentrum und an jedem Ende der Hublänge durch und nehmen Sie den maximal erreichten Wert als Messwert. Geben Sie 1/2 der maximalen Differenz mit \pm an.

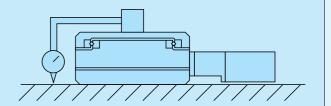
Positioniergenauigkeit


Führen Sie die Positionierung nacheinander in der bestimmten Richtung von der Referenzposition ausgehend durch, messen Sie den Unterschied zwischen der tatsächlichen Fahrstrecke und der theoretischen Fahrstrecke an jeder Position und geben Sie die maximale Differenz innerhalb der Hublänge als absoluten Wert an.

Parallelität der Tischbewegung A

Bezieht sich auf die Parallelität (Indikator fest) der Führungsschlittenbewegung und flachen Oberfläche (Montagefläche des Präzisionspositioniertisches)

- Wenn der Hub kürzer als die Länge des Führungsschlittens ist, fixieren Sie die Prüfvorrichtung auf der Grundplatte, auf der der Präzisionspositionertisch montiert wurde. Positionieren Sie die gerade Kante auf dem Führungsschlitten und wenden Sie anschließend die Prüfvorrichtung im Zentrum des Führungsschlittens an. Führen Sie eine Messung über fast den gesamten Bereich der Hublänge in X- und Y-Richtung durch und verwenden Sie die maximale Zählerstanddifferenz als Messwert.
- Wenn der Hub länger als der Führungsschlitten ist, fixieren Sie die Prüfvorrichtung auf der Grundplatte, auf der der Präzisionspositionertisch montiert wurde. Positionieren Sie die gerade Kante auf dem Führungsschlitten und wenden Sie anschließend die Prüfvorrichtung im Zentrum des Führungsschlittens an. Führen Sie eine Messung über fast den gesamten Bereich der Hublänge durch, während Sie den Schlitten während der Hübe entlang der Länge des Tisches in X und Y-Richtung bewegen. Verwenden Sie die maximale Zählerstanddifferenz als Messwert.

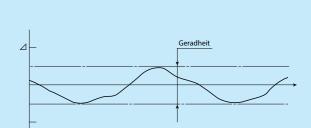


Parallelität der Tischbewegung B

Bezieht sich auf die Parallelität in Bezug auf den Hub des Führungsschlittens zur flachen Oberfläche (Montagefläche des Tisches).

Fixieren Sie die Prüfvorrichtung im Zentrum des Führungsschlittens. Bringen Sie die Prüfvorrichtung auf der Grundplatte an, auf der der

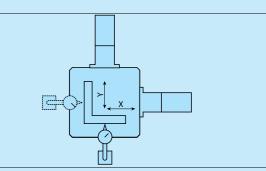
Präzisionspositionertisch montiert wurde. Führen sie eine Messung über fast den gesamten Bereich der Hublänge in X- und Y-Richtung durch. Verwenden Sie die maximale Zählerstanddifferenz als Messwert.



Geradheit

Bezieht sich auf die Abweichung von der idealen geraden Linien der Führungsschlittenbewegung, die linear sein sollte.

- Geradheit horizontal: Bewegung der Fahrachse des Führungsschlittens von rechts nach links (horizontal).
- Geradheit vertikal: Bewegung der Fahrachse des Führungsschlittens von oben nach unten (vertikal).


Diese werden mit einem Testbalken und einer Prüfvorrichtung bzw. einem Laser-System zur Geradheitsmessung gemessen. Der Messwert wird durch das Intervall zwischen zwei geraden, parallel verlaufenden Linien dargestellt. Wenn diese so platziert werden, dass das Intervall so klein wie möglich ist.

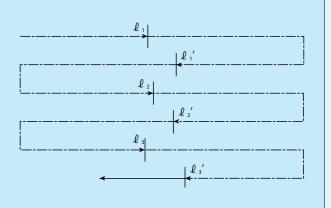
Rechtwinkligkeit der XY-Bewegung

Bezieht sich auf die Rechtwinkligkeit der Bewegungen entlang der X- und Y-Arhse


Fixieren Sie einen Winkel auf dem Führungsschlitten und verwenden Sie dabei eine der Fahrachsen als Referenz, wenden Sie die Prüfvorrichtung lotrecht zur Referenzfahrachse an und verwenden Sie die maximale Differenz innerhalb der Hublänge der Achse als Messwert.

Umkehrspiel

Verfahren Sie den Führungsschlitten und lesen Sie den Wert an der Prüfvorrichtung als Referenz ab, sobald sich der Wert verändert.


Anschließend verfahren sie in der gleichen Richtung bei angelegter Last und lesen sich den Wert der Länge des Verfahrweges ab. Verfahren sie den Führungsschlitten in Gegenrichtung zum Referenzpunkt zurück. Die Differenz zwischen beiden gemessenen Wegstrecken ergibt das Umkehrspiel.

Leerlauf

Positionierung in Vorwärtsrichtung für eine Position durchführen und Position messen (ℓ in der Abbildung). Geben Sie dann den Befehl, ihn in der gleichen Richtung zu bewegen und geben von der Position aus den selben Befehl für die Rückwärtsrichtung, um die Positionierung in Rückwärtsrichtung durchzuführen. Position messen (ℓ i'n der Abbildung). Geben Sie außerdem einen Befehl, ihn in die Rückwärtsrichtung zu bewegen und geben die dann den selben Befehl in die Vorwärtsrichtung von der Position, um die Positionierung in Vorwärtsrichtung durchzuführen. Position messen (ℓ in der Abbildung). Anschließend diese Bewegungen und Messungen wiederholen und die Differenz zwischen den Durchschnittswerten der Halteposition der 7 Vorwärts- und Rückwärts-Positionierungen berechnen.

Diese Messung im Zentrum und an jedem Ende der Bewegung durchführen und den maximalen erhaltenen Wert als Referenzwert verwenden.

Messwert des Leerlaufs

 $= |\frac{1}{7}(R_1 + R_2 + \cdots R_7) - \frac{1}{7}(R_1' + R_2' + \cdots + R_7')| \text{ max}$

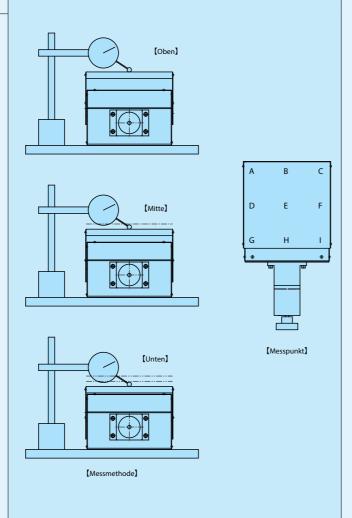
Messung des Parallelismus beim Anheben des Tisches

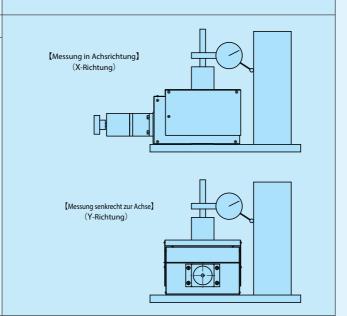
Richten sie die Prüfvorrichtung beim niedrigsten Schritt des Tisches (Hmin) mit dem 0 Wert am Messpunkt E auf der Tischoberfläche mit der Montagefläche des Tisches als Referenz aus und messen Sie die Höhen an den restlichen 8 Punkten (A bis I) mit dem Wert als Referenz.

Heben Sie den Tisch an und führen Sie die gleiche Messung an den mittleren (H_{mid}) und oberen (H_{max}) Schritten durch. Berechnen Sie dann jeden maximalen Unterschied zwischen den Messwerten beim selben Punkt für den unteren, mittleren und oberen Schritt. Verwenden Sie den höchsten Differenzwert von allen 9 Punkten als den Parallelismus beim Anheben des Tisches.

[Beispielberechnung des Parallelismus beim Anheben des Tisches]

	Messwert (μm)				
Messpunkt	Unterer	Mittlerer	Oberer	Maximaler Unterschied	
A	1	2	1	1	
В	2	-1	3	4	
С	3	4	5	2	
D	4	2	1	3	
E	0	0	0	0	
F	-1	2	3	4	
G	-2	3	3	5	
Н	-3	2	3	6	
I	-4	-2	-4	2	


Sollten die Messwerte den in der Tabelle angegeben Werten entsprechen, sollte der maximale Differenzwert von allen Punkten 6 μ m bei Punkt H betragen.


Als Ergebnis beträgt der Parallelismus beim Anheben dieses Tisches 6 μ m.

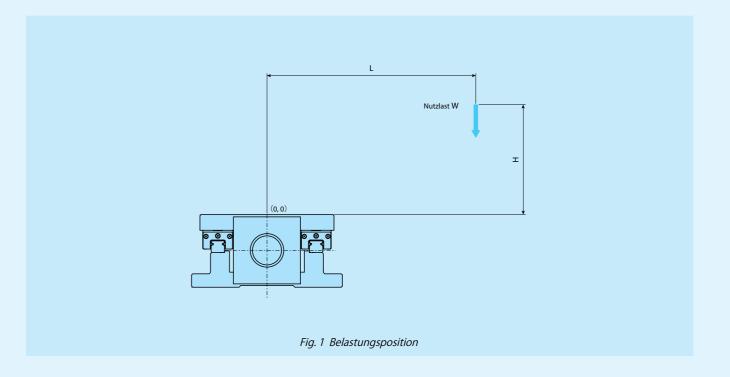
Messung der Rechtwinkligkeit beim Anheben des Tisches

Richten Sie die Prüfvorrichtung beim unteren Schritt des Tisches (H_{min}) mit 0 in Bezug auf den Winkel aus. Anschließend wird der Hubtisch in die höchste Stellung verfahren und der Wert an der Prüfvorrichtung abgelesen. Die Differenz gibt die Abweichung der Rechtwinkligkeit an.

Positionieren Sie den Winkel an der Stelle, die 10 mm vom Rand des Tisches entfernt ist, führen Sie eine Messung für 2 Richtungen (Axialrichtung der Spindel und Richtung lotrecht zur Achse) durch und verwenden Sie den größten Wert von diesen zwei Werten als Geradheit beim Anheben des Tisches.

Belastung, Nutzlast, Zulässige Belastung

■ Maximale Belastung


Die maximale Belastung ist die Belastung die den folgenden Punkten ①, ② und ③ entspricht. Sie ist eingestellt für TE···B, TU, TSL···M, TSLH···M, TX···M, TC···EB, TM, TS/CT, TSLB, AT, AM, TZ und TZ···X. Der Wert verändert sich durch die Position der aufgeladenen Masse (Länge L, Höhe H). Er wird mit der Formel (L,H) = (0, 0) berechnet.

- ① Die Masse, bei der die nominelle Lebensdauer der Wälzkörper-Linearführung, Spindel oder Stützlager bei kontinuierlicher Fahrt bei maximaler Geschwindigkeit für jedes Modell und Größe mit 0,2 s Beschleunigungs-/Verzögerungsdauer 18 000 Stunden beträgt.
- ② Die Masse bei der im Allgemeinen die Beschleunigung von 0,3 G erzielt werden kann.
- ③ Die Masse, die auf Grundlage der statischen Tragzahl der verwendeten Wälzkörper-Linearführung berechnet wird.

 Beachten Sie, dass sich der berechnete Wert aufgrund einer Vielzahl an Bedingungen wie Größe, Spindelausführungen, Länge des Führungsschlittens oder Hublänge unterscheiden kann. Der Wert, der bei den Ausführungen jedes Modells aufgeführt wird, wurde auf Grundlage der schwersten Bedingungen, die für jede Größe typisch sind, berechnet. Für detaillierte Werte, kontaktieren Sie bitte **IKD**.

■ Maximale Nutzlast

Die maximale Nutzlast bezieht sich auf die maximale Masse eines Stahlwürfels, welche die notwendige Beschleunigung gewährleistet: Beschleunigung 0,5 G für Linearbewegung und Beschleunigung 0,5 G für den äußeren Umfang bei einer rotativen Bewegung. Sie wird durch die Vorschubkraft (Drehmoment)-Eigenschaften des verwendeten Motors begrenzt. Je größer die Nutzlast, desto länger die Grenzbeschleunigungsdauer. Bei Modellen mit Linearmotorantrieb (LT, NT···V, NT···H, NT···XZ und NT···XZH) und Modellen mit Direktantrieb (SA···DE) ist die dynamische Nutzlast, die das Verhältnis zwischen Beschleunigung und Nutzlast bei Standard-Fahrmodellen darstellt, festgelegt.

Maximale Geschwindigkeit and Auflösung -

■ Maximale Geschwindigkeit

Die maximale Geschwindigkeit des Präzisionspositioniertisches wird durch die folgende Gleichung festgelegt. Die Art des Spindelantriebs wird durch die zulässige Anzahl an Spindelumdrehungen eingeschränkt, die je nach Hub variieren. Beim Zahnriemenantrieb wird sie mit der maximalen Anzahl an Motorumdrehungen von 900 (min⁻¹) berechnet. Details finden Sie in den Spezifikationen jedes Modells.

Jedes Modell mit Linearmotorantrieb verfügt über eine feste maximale Geschwindigkeit. Siehe die Ausführungen jedes Modells.

Spindelantrieb			
Maxima	le Geschwindigkeit (mm/s) = Spindelsteigung (mm) $\times \frac{\text{Zulässige Anzahl an Spindelumdrehungen (min)}^{-1}}{60}$		
Zahnriemenantrieb			
Maximale Geschwindigkeit (mm/s) = Wirkdurchmesser $\times \pi$ (mm) $\times \frac{\text{Maximale Anzahl an Motorumdrehungen (min)}}{60}$			
(Wirkdurchmesser $\times \pi = 100$ mm)			

Um die aktuelle Positionierdauer zu erhalten, muss das Ablaufschema gemäß den Bedingungen wie Beschleunigungs-/Verzögerungsdauer und Hublänge berücksichtigt werden. Siehe den Abschnitt Berücksichtigung von Ablaufschemata

Auflösung

Auflösung bezieht sich auf die minimale Vorschubgeschwindigkeit, die für den Präzisionspositioniertisch möglich ist und durch folgende Gleichung erzielt wird.

Jeder Linearmotorantrieb verfügt über eine feste Auflösung. Siehe die Ausführungen jedes Modells.

Spindelantrieb	
	Auflösung (mm/Impuls) = Spindelsteigung (mm) Anzahl der Teilungen pro Motorumdrehung (Impuls)
Zahnriemenantrieb	
	Auflösung (mm/lmpuls) = $\frac{\text{Wirkdurchmesser} \times \pi \text{ (mm)}}{\text{Anzahl der Teilungen pro Motorumdrehung (lmpuls)}}$ (Wirkdurchmesser $\times \pi = 100 \text{ mm}$)

Berücksichtigung von Ablaufschemata

■ Berechnung der Positionierdauer

Die Positionierdauer, die gemessen wird, wenn sich der Präzisionspositioniertisch tatsächlich bewegt, kann durch folgende Gleichung

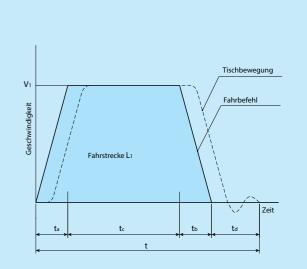
Bei Anwendungen die eine hochpräzise Positionierung erfordern, müssen die Ausregelzeit von der Beendigung der Befehlsimpulseingabe bis zum vollständigen Stillstand des Schlittens am Positionierpunkt sowie die Schwingungsdämpfungsdauer der Maschine oder des Geräts, zusätzlich zu den Beschleunigungs-/Verzögerungszeiten und Fahrzeit mit konstanter Geschwindigkeit, addiert werden

Positionierung über lange Strecken

Lange Strecke bezieht sich in diesem Kontext auf Strecken, für die es eine ausreichende Fahrzeit mit konstanter Geschwindigkeit gibt, selbst wenn die Beschleunigungs-/Verzögerungsdauer berücksichtigt wird.

$$t = \frac{L_1}{V_1} + \frac{t_a + t_b}{2} + t_d$$

wenn t: Positionierdauer s


ta, tb: Beschleunigungs-/Verzögerungsdauer s

tc: Fahrzeit mit konstanter Geschwindigkeit s

t_d: Ausregelzeit s

L1: Verfahrweg mm

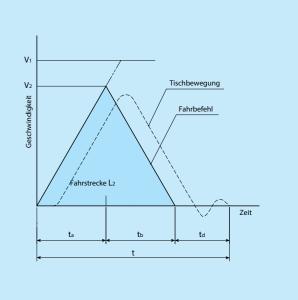
V₁: Fahrgeschwindigkeit (eingestellte Geschwindigkeit) mm/s

Positionierung über kurze Strecken

Kurze Strecke bezieht sich in diesem Kontext auf Strecken, bei denen es keine Fahrzeit mit konstanter Geschwindigkeit gibt, da die Verzögerung bereits vor dem Erreichen einer konstanten Geschwindigkeit einsetzt.

$$t = \frac{L_2}{V_2} + \frac{t_a + t_b}{2} + t^d$$

wenn t:Positionierdauer s


ta, tb: Beschleunigungs-/Verzögerungsdauer s

t_d: Ausregelzeit s

L2: Verfahrweg mm

V1: Eingestellte Geschwindigkeit mm/s

V2: Fahrgeschwindigkeit mm/s

■ Berechnung der Grenzbeschleunigungsdauer

Das für den Antrieb des Präzisionspositioniertisch erforderliche Drehmoment (Vorschubkraft) hat den höchsten Wert während der Beschleunigung. Das Drehmoment (Vorschubkraft), das für diese Beschleunigung erforderlich ist, wird durch das Motor-Abtriebsdrehmoment (Vorschubkraft des Linearmotors) begrenzt. Daher wird die Grenzbeschleunigungsdauer mit einem horizontal verwendeten Tisch mit folgender Gleichung berechnet.

Bei Spindelantrieb und Zahnriemenantrieb

● Angewendetes Drehmoment T_L

$$T_L = T_0 + \mu \text{Wg} \cdot \frac{\ell}{2\pi \eta} [\text{N·m}] \cdot \cdots \cdot \text{Spindelantrieb}$$

$$T_L = T_0 + (Wg \times Verkleinerungsfaktor des Keils) \frac{\ell}{2\pi \eta} [N \cdot m] \cdots Gilt für TZ$$

$$T_L = T_0 + \mu Wg \cdot \frac{r}{\eta} [N \cdot m] \cdot \cdots Zahnriemenantrieb$$

● Beschleunigungsmoment T_a

$$T_a = (J_T + J_M + J_C + J_L) \cdot \frac{2\pi N}{60t^a} [N \cdot m]$$

$$J_L = W \cdot \left(\frac{\ell}{2\pi}\right)^2 [kg \cdot m^2]$$
Spindelantrieb

$$J_L {=} W \cdot \left(\frac{\ell}{2\pi}\right)^2 \times \text{Verkleinerungsfaktor des Keils}^2 \left[kg \cdot m^2\right] \cdot \cdots \cdot \text{Gilt für TZ}$$

$$J_L=W \cdot r^2 \ [kg \cdot m^2] \ \cdots \cdots Zahnriemenantrieb$$

- lacktriangle Für Beschleunigung benötigtes Drehmoment T_P $T_P = T_L + T_a$ $[N \cdot m]$ $(T_P \times k < T_M)$
- Grenzbeschleunigungsdauer ta

$$t_a = (J_T + J_M + J_C + J_L) \cdot \frac{2\pi N}{60} \frac{k}{T_M^{(S)} T}$$

[Bei AT]

● Angewendetes Drehmoment T_L

$$T_L = T_0 + \mu \text{Wg} \cdot \frac{\ell}{2\pi n}$$

Belastungsträgheit J

$$J_L = W \cdot \left(\frac{\ell \cdot R_0}{2\pi L} \right)^2$$

Abstand zum Rotator L

Modell	ℓ [m]	L [m]
AT120A	0,001	0,100
AT200A	0,001	0,130
AT300A	0,002	0,186

 T_0 : Anlaufmoment N·m

μ : Reibungskoeffizient des Wälzkörpers (0,01)

W : Belastung kg

 ℓ : Spindelsteigung m

r : Radius der Riemenscheibe (0,0159 m)

 η : Effizienz 0,9

J_T: Trägheitsmoment des Tisches kg·m²

J_M: Trägheitsmoment des Motors kg·m²

Jc : Trägheitsmoment der Kupplung

J∟: Trägheitsmoment der Belastung kg•m²

N: Drehzahl des Motors min-1

t_a: Beschleunigungsdauer s

g: Erdanziehungskraft (9,8 m/s²)

T_M: Motor-Abtriebsdrehmoment N·m

• Beim Schrittmotor handelt es sich um das Abtriebsdrehmoment bei N Motorumdrehungen.

• Beim AC-Servomotor handelt es sich um das maximale (kurzzeitige) Drehmoment bei der N Umdrehungen.

k : Sicherheitsfaktor

(AC-Servomotor :1,3) (Schrittmotor :1,5 \sim 2)

 $Verkleinerungsfaktor\ des\ Keils\ :0,5\ wenn\ 1:2$

: 0,25 wenn 1:4

Ro : Entfernung vom Zentrum des Tisches zum Schwerpunkt der

 $L \quad : Entfernung \ vom \ Zentrum \ des \ Tisches \ zum \ Rotator \ m$

Bei Linearmotorantrieb

● Kraft aus Beschleunigung Fa

$$F_a = (W_L + W_T) \cdot \frac{V_L}{t_a^L} N]$$

- lack Für die Beschleunigung erforderliche Vorschubkraft F_P $F_P = F_a + F_L$ [N]
- Grenzbeschleunigungsdauer ta

$$t_a = \frac{(W_L + W_T) \cdot V \cdot k}{F_M - F_L} \frac{1}{s}$$

 μ : Reibungskoeffizient der Rollenumlaufführung (0,01)

W_T: Masse des Verfahrtischs kg

W∟: Belastung kg

F_R: Laufwiderstand N

(LT130H: 20N)

(LT170H: 40N)

 $F_c\ : Zugwiderstand\ Kabel\,(^1)\ \ N$

(LT Baureihe: Circa 1,0 N)

(NT Baureihe: Keiner)

F_M: Vorschubkraft Linearmotor N

(Maximale Vorschubkraft bei Fahrgeschwindigkeit V)

t_a: Beschleunigungsdauer s

V : Fahrgeschwindigkeit m/s

g : Erdanziehungskraft 9,8 m/s²

k : Sicherheitsfaktor (1,3)

Hinweis (¹) Der Zugwiderstand des Kabels unterscheidet sich je nach Masse des Kabels und der Art des Ziehens. Verwenden Sie einen erwarteten Widerstandswert für die Berechnung. [Bei LT···CE, LT···LD]

Reibungskoeffizient des Wälzkörpers Fr

 $F_f = \mu (W_L + W_T) g [N]$

Der minimale Wert von Ff sollte jedoch Folgendes betragen:

Bei LT100CE: 2,5 N

Bei LT150CE: 5,0 N

Bei LT130LD: 6,0 N

Bei LT170LD: 6,0 N

● Kraft des Fahrwiderstands FL

 $F_L = F_f + F_c [N]$

[Bei LT···H]

● Laufwiderstand F_R

LT130H: 20N, LT170H: 40N

Geschwindiakeitskoeffizient fv

Fahrgeschwindigkeit	LT130H	LT170H
V [m/s]		
≤ 0,5	1	
> 0,5 und < 1,0	1,	,5
> 1,0 und < 1,5	2,	,25

● Kraft des Fahrwiderstands FL

 $F_L = f_V \cdot F_R + F_c [N]$

[Bei NT38V]

● Kraft des Fahrwiderstands FL

 $F_{L} = 0.25 \text{ N}$

[Bei NT55V/NT80V]

● Kraft des Fahrwiderstands FL

 $F_L = 1.5 \text{ N}$

[Bei NT80XZ]

■ Kraft des Fahrwiderstands FL

Horizontale Achse: F_L = 1,5 N

Vertikale Achse: $F_L = 0.5 \text{ N}$ (2)

[Bei NT90XZH]

■ Kraft des Fahrwiderstands F_L

Horizontale Achse: $F_L = 2.0 \text{ N}$

Vertikale Achse: $F_L = 2,0 \text{ N}$ (2)

[Bei NT88H]

lacktriangle Kraft des Fahrwiderstands $\ F_L$

 $F_L = 0.5 N$

Hinweis (2) Dabei handelt es sich um den Widerstandswert für den Hub von ±5 mm vom Gleichgewichtspunkt im Zentrum des Hubbereichs, unter der Annahme eines Federsystem-Ausgleichsmechanismus der vertikalen Achse.

Der Wert ändert sich je nach Montageposition der Feder oder der Hubweite in der tatsächlichen Berechnung. Bitte überprüfen Sie diesen unter Verwendung der tatsächlichen Maschine.

Bei Direktantrieb (SA···DE)

[Bei SA···DE/X (Y)]

Reibungskoeffizient des Wälzkörpers Ff

F_f Wert ist wie folgt:

Bei SA65DE/X 0,5 N Bei SA120DE/X 3,0 N

• Kraft des Laufwiderstands F_L $F_L=F_f+F_c$ [N]

● Kraft aus Beschleunigung Fa

$$F_a = (W_L + W_T) \cdot \frac{V}{t_a} [N]$$

● Grenzbeschleunigungsdauer ta

$$t_a = \frac{(W_L + W_T) \cdot V \cdot k}{F_M - F_L} [s]$$

[Bei SA···DE/S]

• Reibungswiderstand des Wälzkörpers M_f

Der Mr-Wert sollte wie folgt sein.

 Bei SA65DE/S
 0,03 N⋅m

 Bei SA120DE/S
 0,1 N⋅m

 Bei SA200DE/S
 0.2 N⋅m

lacktriangle Drehmoment aus dem Rotationswiderstand $\, M_L \,$

 $M_L {=} M_f {+} M_c \ [N{\boldsymbol \cdot} m]$

● Drehmoment aus Beschleunigung Ma

$$M_a = (J_L + J_T) \cdot \frac{R}{t_a} [N \cdot m]$$

lacktriangle Für Beschleunigung benötigtes Drehmoment M_P

 $M_P = M_a + M_L [N \cdot m]$

● Grenzbeschleunigungsdauer ta

$$t_a = \frac{(J_L + J_T) \cdot R \cdot k}{M_M - M_L} [s]$$

W_T: Masse des Verfahrtischs kg

W_L: Belastung kg

F_c: Zugwiderstand Kabel (1) N

F_M: Vorschubkraft Linearmotor N

(Maximale Vorschubkraft bei Fahrgeschwindigkeit V)

t_a: Beschleunigungsdauer s

V: Fahrgeschwindigkeit m/s

k : Sicherheitsfaktor (1,3)

Hinweis (1) Der Zugwiderstand des Kabels unterscheidet sich je nach Masse des Kabels und der Art des Ziehens. Verwenden Sie einen erwarteten Widerstandswert für

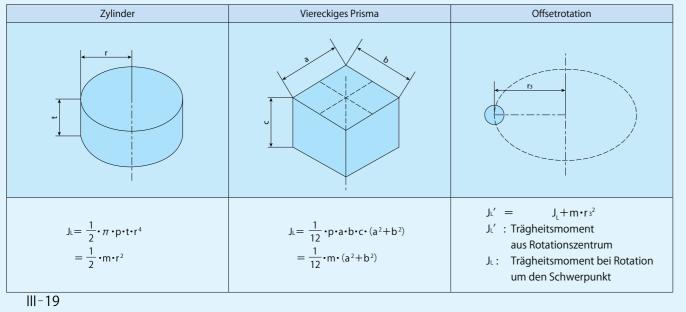
J∟: Trägheitsmoment der Last Kg•m²

die Berechnung.

J_T: Trägheitsmoment des Verfahrtischs Kg·m²

M_c: Zugwiderstand Kabel (²) N•m M_M: Ausrichttisch Drehmoment N•m

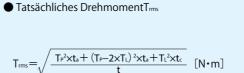
t_a: Beschleunigungsdauer sR: Fahrgeschwindigkeit rad/s


k : Sicherheitsfaktor (1,3)

Hinweis $(^2)$ Da es kein Kabel für den θ -Achsen-Verfahrtisch gibt, stellen Sie den Zugwiderstand des Kabels auf 0, wenn die Last nicht das Kabel zieht.

Berechnen Sie das Trägheitsmoment der Last indem Sie sich auf die untenstehenden Formeln beziehen.

Berechnung des Trägheitsmoments


p: Dichte, m: Masse

■ Berechnung des tatsächlichen Drehmoments und der tatsächlichen Vorschubkraft

Da beim Antrieb des Präzisionspositioniertisches ein hohes Drehmoment (Vorschubkraft) für die Beschleunigung / Verzögerung erforderlich ist, kann das tatsächliche Drehmoment (tatsächliche Vorschubkraft) das Nenndrehmoment (Nennvorschubkraft) des Motors je nach Auslastungsgrad jedes Schemas bei Verwendung des AC-Servomotors oder des Linearmotorantriebs übersteigen. Das Fortsetzen des Betriebs in dieser Situation kann zu Überhitzen und Ausfall des Motors führen. Stellen Sie deshalb sicher, dass das tatsächliche Drehmoment (tatsächliche Vorschubkraft) kleiner als das Nenndrehmoment (Nennvorschubkraft) des Motors ist. Das tatsächliche Drehmoment (tatsächliche Vorschubkraft) nach Ablaufschema des Tisches wird mit folgender Gleichung berechnet.

Sollte das Nenndrehmoment (Nennvorschubkraft) des Motors größer als das tatsächliche Drehmoment (tatsächliche Vorschubkraft) sein, ist der Dauerbetrieb gemäß dem Ablaufschema möglich.

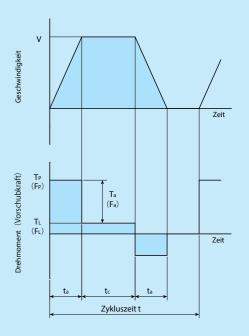
Bei Linearmotorantrieb

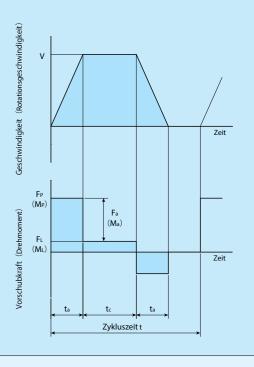
Wenn ein AC-Servomotor

verwendet wird

● Tatsächliche Vorschubkraft Fms

$$F_{rms} = \sqrt{\frac{F_P^2 x t_a + (F_P - 2 x F_L)^2 x t_a + F_L^2 x t_c}{t}} \quad [N]$$

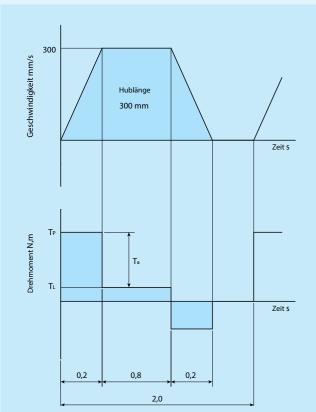

Bei Direktantrieb (SA···DE)


● Tatsächliche Vorschubkraft (gilt für SA···DE/X(Y)) Frms

$$F_{rms} = \sqrt{\frac{F_{P}^2 \times t_a + (F_{P} - 2 \times F_L)^2 \times t_a + F_L^2 \times t_c}{t}} \quad [N]$$

● Tatsächliche Vorschubkraft (gilt für SA···DE/S) Mrms

$$M_{\text{Irms}} = \sqrt{\frac{M_{\text{P}}^2 \times t_a + (M_{\text{P}} - 2 \times M_L)^2 \times t_a + M_L^2 \times t_c}{t}} \quad [N \cdot m]$$



■ Beispiel Berücksichtigung von Ablaufschemata

Wenn ein AC-Servomotor verwendet wird

Einsatzbedingungen

Montageanordnung		Horizontaler Einsatz
Belastung	W	30 kg
Hublänge	L	300 mm
Fahrgeschwindigkeit		300 mm/s
(eingestellte Geschwindigkeit)	٧	
Beschleunigungs-/		0,2 s
Verzögerungsdauer	ta	
Fahrzeit mit konstanter		0,8 s
Geschwindigkeit	t c	
Zykluszeit	t	2,0 s

 Vorübergehende Auswahl des Positioniertisches Wählen Sie vorrübergehend TU60S49/AT103G10S03 aus.

Basisausführung

Dasisausturifurig		
Spindelsteigung	l	10 mm
Hublänge		300 mm
Maximale Geschwindigkeit		500mm/s
Anlaufmoment	Ts	0,08 N•m
Trägheitsmoment des Tisches	J⊤	0,93×10 ⁻⁵ kg•m²
Trägheitsmoment der		0,290×10 ⁻⁵ kg•m²
Kupplung	Jc	0,290 × 10 -kg · III-

■ Motorausführung

AC-Servomotor wird verwendet	SGMAV-01A
Nenndrehmoment	0,318 N·m
Motorträgheit J _M	0,380×10 ⁻⁵ kg•m²

Berechnung des für die Beschleunigung benötigten Drehmoments

 $T_L = T_s + \mu Wg \cdot \frac{\ell}{2\pi \eta}$ = 0,08+0,01×30×9,8× $\frac{0,01}{2\times \pi \times 0,9}$

• Angewendetes Drehmoment TL

• Beschleunigungsmoment Ta

=0,09N•m

$$J_{L}=W \cdot \left(\frac{\ell}{2\pi}\right)^{2}$$

$$=30 \times \left(\frac{0,01}{2 \times \pi}\right)^{2} = 7,60 \times 10^{-5} \text{kg} \cdot \text{m}^{2}$$

$$N=V \times \frac{60}{\ell} = 0,3 \times \frac{60}{0,01} = 1800 \text{ min}^{-1}$$

$$T_{a}=(J_{T}+J_{M}+J_{C}+J_{L}) \cdot \frac{2\pi N}{60 \text{ta}}$$

$$=(0,93+0,380+0,290+7,60) \times 10^{-5} \times \frac{2 \times \pi \times 1800}{60 \times 0,2}$$

$$=0,09N \cdot \text{m}$$

• Für Beschleunigung benötigtes Drehmoment TP

$$T_P = T_L + T_a = 0.09 + 0.09 = 0.18N \cdot m$$

Überprüfen Sie an dieser Stelle, ob der T_P×k (Sicherheitsfaktor) kleiner als das Abtriebsdrehmoment T_M des Motors ist.
Sollte dieser Wert überschritten werden, überprüfen Sie die maximale Geschwindigkeit und die Beschleunigungs-/Verzögerungsdauer. Für das berücksichtigte Ablaufschema ist dieser kleiner als das Abtriebsdrehmoment T_M, der unten angegeben ist.

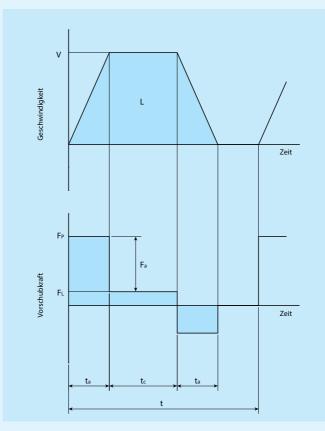
$$T_M = 0.318 \times 3 = 0.95 \text{ N} \cdot \text{m}$$

 $T_P \times k = 0.18 \times 1.3 = 0.23 \text{ N} \cdot \text{m} < T_M$

● Berücksichtigung des tatsächlichen Drehmoments • Tatsächliches Drehmoment • T_{rms}

$$T_{rms} = \sqrt{\frac{T_{P}^{2} \times t_{a} + (T_{P} - 2 \times T_{L})^{2} \times t_{a} + T_{L}^{2} \times t_{c}}{t}}$$

$$= \sqrt{\frac{0.23^{2} \times 0.2 + (0.23 - 2 \times 0.09)^{2} \times 0.2 + 0.09^{2} \times 0.8}{2.0}}$$


≒0,09 N·m

Da das Nenndrehmoment des Motors größer als das tatsächliche Drehmoment Trms ist, kann davon ausgegangen werden, das der Dauerbetrieb mit dem betrachteten Ablaufschema möglich ist.

Bei Linearmotorantrieb

Die tatsächliche Vorschubkraft kann die Nennvorschubkraft je nach Auslastungsgrad des Linearmotortischs übersteigen, was zum Überhitzen und Ausfall des Motors führen kann und Bruchschäden und Verletzungen verursachen kann. Vor dem Betrieb sollte sichergestellt werden, das die tatsächliche Vorschubkraft unter der Nennvorschubkraft liegt.

Untenstehend beschrieben finden Sie ein Beispiel der Berücksichtigung eines Ablaufschemas mit LT170HS. Stellen Sie vorrübergehend das untenstehende Ablaufschema unter Berücksichtigung der Belastung und Beschleunigung aus der Belastungstabelle auf Seite II-288 ein.

Einstellbare Optionen

		Modell		LT170HS (Luftselbstkühlung)
		Masse des Verfahrtischs	WT	4,0 kg Siehe Seite II - 302
	Tisch- ausführung	Maximale Vorschubkraft b. Fahrgeschw. V	Fм	ca. 550N Siehe Seite II-288
		Laufwiderstand	FR	Siehe [Bei LT···H] im
		Geschw koeffizient	fv	Berechnungsabschnitt d. Grenzbeschleunigungsdauer
	Belastung		WL	30 kg
	Verfahrweg		L	1,2 m
	Fahrgeschwindigkeit (eingestellte Geschwindigkeit)			1,5 m/s
			ta	0,3 s
Zeit			t c	0,5 s
				2,5 s
	Zugwiderstand Kab	oel	Fc	1,0 N Erwarteter Wert
	Sicherheitsfaktor		k	1,3
	Umgebungs-			30 ℃
	temperatur			30 0

SCHRITT 1 Berechnung der für die Beschleunigung erforderlichen Vorschubkraft.

①Kraft des Fahrwiderstands F∟

$$F_L = f_V \times F_R + F_c = 2,25 \times 40 + 1 = 91 \text{ N}$$

②Kraft aus Beschleunigung Fa

$$F_a = (WL + WT) \cdot \frac{V}{t_a}$$

= $(30 + 4,0) \times \frac{1,5}{0,3} = 170N$

 $\ \ \ \,$ Für die Beschleunigung erforderliche Vorschubkraft $\ \ \, F_P$

$$F_P = F_a + F_L$$

= 170+91=261N

Überprüfen Sie an dieser Stelle, ob der M_P×k (Sicherheitsfaktor) unter der auf Seite II −288 angegebenen Schubeigenschaften-Kurve liegt. Sollte dieser Wert überschritten werden, überprüfen Sie die maximale Geschwindigkeit für das Ablaufschema und die Beschleunigungs-/ Verzögerungsdauer.

Im untenstehenden Beispielschema liegt er unter der Schubeigenschaften-Kurve.

Maximale Vorschubkraft F_M bei 1,5 m/s=Circa 550 N $F_P \times k = 261 \times 1,3 = 339,3 \text{ N} < F_M$

SCHRITT 2 Berücksichtigung der tatsächlichen Vorschubkraft

 \bullet Die tatsächliche Vorschubkraft $\; F_{\scriptscriptstyle ms}$ kann wie folgt berechnet werden.

$$\begin{split} F_{ms} &= \sqrt{\frac{F_{P}^2 x t_a + (F_{P} - 2 x F_L)^2 x t_a + F_L^2 x t_c}{t}} \\ &= \sqrt{\frac{261^2 x 0.3 + (261 - 2 x 91)^2 x 0.3 + 91^2 x 0.5}{2.5}} \\ &\stackrel{\rightleftharpoons}{=} 103 \text{ N} \end{split}$$

Überprüfen Sie an dieser Stelle, dass Frms unter der Nennvorschubkraft liegt. Sollte die Nennvorschubkraft überschritten werden, überprüfen Sie die maximale Geschwindigkeit für das Ablaufschema und die Beschleunigungs-/Verzögerungsdauer. (Bei LT···H variieren die Vorschubeigenschaften je nach Umgebungstemperatur. Siehe das Diagramm zu den Nennwerteigenschaften.)

Beim Beispielschema beträgt die Nennvorschubkraft bei einer Umgebungstemperatur von 30° C ca. 117 N, so dass der Wert 103 N<117 N (Nennvorschubkraft) beträgt und man davon ausgehen kann, dass der Dauerbetrieb möglich ist.

Bei Ausrichttisch SA

Die tatsächliche Vorschubkraft kann die Nennvorschubkraft je nach Auslastungsgrad des Ausrichttischs SA übersteigen (oder das tatsächliche Drehmoment das Nenndrehmoment), was zur Überhitzung und Ausfall des Motors führt und Bruchschäden und Verletzungen verursachen kann. Vor dem Betrieb sollte sichergestellt werden, das die tatsächliche Vorschubkraft unter der

Nennvorschubkraft (oder das tatsächliche Drehmoment unter dem Nenndrehmoment) liegt.

Untenstehend beschrieben finden Sie ein Beispiel der Berücksichtigung eines Ablaufschemas mit dem Ausrichttisch SA120DE/XYS.

Stellen Sie das Ablaufschema vorrübergehend wie unten angegeben ein und berücksichtigen Sie die Grenzbeschleunigungsdauer.

Einstellbare Optionen

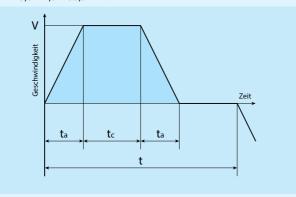
Emsten	bare Optionen			
Tischmodell			SA120DE/XYS	
Nutzlast			5,0 kg	
Trägheitsmoment der Last			1,0×10 ⁻² kg•m ²	
	Masse des Verfahrtischs		5,9 kg	
ıse	Hub einstellen	L	0,01 m	
Act	Maximale Geschwindigkeit	V	0,1 m/s	
Ablaufschema X-Achse	Beschleunigungs-/ Verzögerungsdauer	ta	0,05 s	
aufsch	Fahrzeit mit konstanter Geschwindigkeit	t c	0,05 s	
Abl	Taktzeit	t	0,4 s	
	Zugwiderstand Kabel	Fc	1.0N	
	Masse des Verfahrtischs	W⊤	3,4 kg	
use	Hub einstellen	L	0,01 m	
-Acl	Maximale Geschwindigkeit	V	0,1 m/s	
Ablaufschema Y-Achse	Beschleunigungs-/ Verzögerungsdauer	ta	0,05 s	
aufsch	Fahrzeit mit konstanter Geschwindigkeit	t c	0,05 s	
Abla	Taktzeit	t	0, 4 s	
,	Zugwiderstand Kabel	Fc	1,0 N	
	Trägheitsmoment des Verfahrtisches	Jτ	2,0×10 ⁻³ kg•m ²	
e	Bedienwinkel einstellen	L	0,1 π rad	
chs	bedienwinkereinstellen		18°	
- -θ	Marrianala Casabrruia di alrait	R	π rad/s	
na	Maximale Geschwindigkeit	"	180°/s	
Ablaufschema $ heta$ -Achse	Beschleunigungs-/ Verzögerungsdauer	ta	0,05 s	
Ablac	Fahrzeit mit konstanter Geschwindigkeit	t c	0,05 s	
	Taktzeit	t	0,4 s	
	Zugwiderstand Kabel	Мс	0,0 N•m	
Sich	erheitsfaktor	k	1,3	

SCHRITT 1 Berechnung der für die X-Achsen-Beschleunigung erforderlichen Vorschubkraft.

①Kraft des Fahrwiderstands F₁

$$F_L = F_f + F_c = 3.0 + 1.0 = 4.0 \text{ N}$$

②Kraft aus Beschleunigung Fa


$$F_a = (W_L + W_T) \cdot \frac{V}{t_a}$$

= $(5.0 + 5.9) \times \frac{0.1}{0.05} = 21.8N$

③Für die Beschleunigung erforderliche Vorschubkraft FP

$$F_P = F_a + F_L$$

= 21,8+4,0=25,8 N

Überprüfen Sie an dieser Stelle, ob $F_P \times k$ (Sicherheitsfaktor) unter der maximalen Vorschubkraft auf Seite II – 264 liegt. Sollte dieser Wert überschritten werden, überprüfen Sie die maximale Geschwindigkeit für das Ablaufschema und die Beschleunigungs-/Verzögerungsdauer. Im Beispielablauf können Sie sehen, dass es unter der maximalen Vorschubkraft liegt.

Die maximale Vorschubkraft F_M von SA120DE/X=70N $F_P \times k = 25,8 \times 1,3 = 33,54$ N $< F_M$

SCHRITT 2 Berücksichtigung der tatsächlichen Vorschubkraft

ullet Die tatsächliche Vorschubkraft F_{rms} kann wie folgt berechnet werden.

$$\begin{split} F_{rms} = & \sqrt{\frac{F_P{}^2 \times t_a + (F_P{}^-2 \times F_L){}^2 \times t_a + F_L{}^2 \times t_c}{t}} \\ = & \sqrt{\frac{25.8^2 \times 0.05 + (25.8{-}2 \times 4.0){}^2 \times 0.05 + 4.0{}^2 \times 0.05}{0.4}} \end{split}$$

Überprüfen Sie an dieser Stelle, dass F_{rms} unter der Nennvorschubkraft liegt. Sollte die Nennvorschubkraft überschritten werden, überprüfen Sie die maximale Geschwindigkeit für das Ablaufschema und die Beschleunigungs-/Verzögerungsdauer. Im Beispielschema kann man davon ausgehen, dass der Dauerbetrieb möglich ist.

SCHRITT 3 Berechnung der für die Y-Achsen-Beschleunigung erforderlichen Vorschubkraft und tatsächlichen Vorschubkraft.

Führen Sie die gleiche Berechnung wie bei der X-Achse durch. Sollte es sich um das gleiche Ablaufschema handeln, ist die Bedingung für die Y-Achse leichter, da die Masse des Verfahrtischs geringer ist. Deshalb wird dies in diesem Beispiel nicht aufgeführt.

SCHRITT 4 Berücksichtigung des für die θ -Achsen-Beschleunigung erforderlichen Drehmoments

 $\textcircled{1} Drehmoment \ aus \ dem \ Rotationswiderstand \ M_L$

$$M_L = M_f + M_c$$

= 0,1+0,0=0,1 N·m

②Drehmoment aus Beschleunigung Ma

$$\begin{aligned} M_{a} &= (J_{L} + J_{T}) \cdot & \frac{R}{t_{a}} \\ &= (0,01 + 0,002) \times & \frac{\pi}{0.05} &\stackrel{\rightleftharpoons}{=} 0,754 \text{N} \cdot \text{m} \end{aligned}$$

③Für Beschleunigung benötigtes Drehmoment Me

$$M_P = M_a + M_L$$

= 0,754+0,1=0,854 N·m

Überprüfen Sie an dieser Stelle, ob der M_P×k (Sicherheitsfaktor) unter dem auf Seite II - 264 angegebenen maximalen Drehmoment liegt. Sollte dieser Wert überschritten werden, überprüfen Sie die maximale Geschwindigkeit für das Ablaufschema und die Beschleunigungs-/ Verzögerungsdauer. Im untenstehenden Beispielschema liegt er unter dem maximalen Drehmoment.

Maximaler Drehmoment M_M von SA120DE/S=2,0 N·m $M_P \times k = 0.854 \times 1.3 = 1.11N \cdot m < M_M$

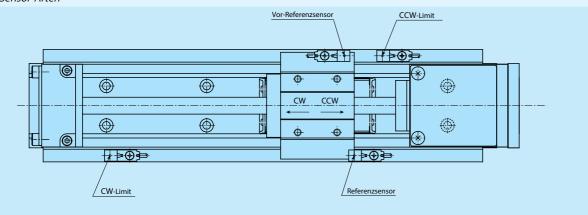
SCHRITT 5 Berücksichtigung des tatsächlichen Drehmoments

• Das tatsächliche Drehmoment Frms kann wie folgt berechnet werden.

$$\begin{split} M_{rms} = & \sqrt{\frac{M_{P}^{2} \times t_{a} + (M_{P} - 2 \times M_{L})^{2} \times t_{a} + M_{L}^{2} \times t_{c}}{t}} \\ = & \sqrt{\frac{0.854^{2} \times 0.05 + (0.854 - 2 \times 0.1)^{2} \times 0.05 + 0.1^{2} \times 0.05}{0.4}} \end{split}$$

≒0.38 N•m

Überprüfen Sie an dieser Stelle, dass M_{rms} unter dem Nenndrehmoment liegt. Sollte das Nenndrehmoment überschritten werden, überprüfen Sie die maximale Geschwindigkeit für das Ablaufschema und die Beschleunigungs-/Verzögerungsdauer. Im Beispielschema kann man davon ausgehen, dass der Dauerbetrieb möglich ist.


**Achtung Sollte die Belastung vom Rotationszentrum versetzt sein, erzeugt die Beschleunigung / Verzögerung der X- und Y-Achse eine Drehmomentbelastung auf der θ -Achse. Deshalb muss mit besonderer Vorsicht vorgegangen werden.

Ausführung mit Sensoren

Der Präzisionspositioniertisch ist mit CW- und CCW-Limit-Sensoren zur Verhinderung des Fahrens in den mechanischen Endanschlag sowie mit Vor-Referenz- und Referenzsensoren zur Positionsbestimmung der Maschine ausgestattet. Bei einigen Tischmodellen sind diese Sensoren standardmäßig enthalten und bei anderen Modellen ist die Montage durch Produktbezeichnungen anzugeben.

Die Sensorarten, die für den Präzisionspositioniertisch verwendet werden, werden in Tabelle 1 und Angaben zu jedem Sensor in den Tabellen 2 bis 4 aufgeführt. Für die Ausführungen der Anschlüsse für NT····V, SA200DE/S, LT und TM, siehe Tabelle 5.1 und 5.2. Bei anderen Tischen ist die Verdrahtung offen, so dass der Anschluss für den Sensorausgang und die Steckseite durch den Kunden separat vorbereitet werden muss. Für die Sensor-Zeittafel, siehe den Abschnitt für die Sensorausführungen jedes Modells. Außerdem können, sofern nicht anders angegeben, die Sensorpositionen feinjustiert werden. Bitte führen Sie die Justierung selbst durch.

Tabelle 1 Sensor-Arten

Ein Markierröhrchen mit eingraviertem Signalnamen (ORG, PORG, CW oder CCW) wird bei der Ausführungen mit offener Verdrahtung in den Schacht eingeführt.

Sensor		CW-Limit	CCW-Limit	Vor-Referenzsensor (PORG)	Referenzsensor (ORG)	
Tischmodell		CW LIIIII	CCVV LIITIIC	VOI NEIEIEIZSEIISOI (I ONG)	nererenzaciiaoi (ond)	
TE···B(1)		Näherungssensor	Näherungssensor	Näherungssensor	Näherungssensor	
TU (1)		Näherungssensor	Näherungssensor	Näherungssensor	Näherungssensor	
TSL···M		Näherungssensor	Näherungssensor	Näherungssensor	Fotosensor 4 (2)	
TSLH···M • CTLI	⊣···M	Fotosensor ③	Fotosensor ③	Fotosensor ③	Fotosensor 4 (2)	
TXM • CTX/	M	Fotosensor ③	Fotosensor ③	Fotosensor ③	Fotosensor 4 (2)	
TC···EB(1)		Näherungssensor	Näherungssensor	Näherungssensor	Näherungssensor	
TM (1) (4)		Magnetsensor(5)	Magnetsensor (5)	Magnetsensor(5)	Magnetsensor (5)	
	TS55/55 • CT55/55	Mikroschalter (6)	Mikroschalter (6)	Näherungssensor	Fotosensor ③	
TS/CT(1)	TS75/75	Fotosensor ①	Fotosensor ①	Fotosensor ①	Fotosensor ①	
13/C1(*)	CT75/75	Fotosensor ③	Fotosensor ③	Fotosensor ③ (5)	Fotosensor ③ (5)	
	Davon abweichend	Fotosensor ③	Fotosensor ③	Fotosensor ③	Fotosensor ② (2)	
TSLB		Näherungssensor	Näherungssensor	Näherungssensor	Näherungssensor	
LT···CE(1)		Näherungssensor (3)	Näherungssensor (3)	Näherungssensor (3)	Encoder (3) (5)	
LT···LD		Näherungssensor (3) (5)	Näherungssensor (3) (5)	Näherungssensor (3) (5)	Encoder (3) (5)	
LT···H		Näherungssensor (3) (5)	Näherungssensor (3) (5)	Näherungssensor (3) (5)	Encoder (3) (5)	
NT…V(1)		Näherungssensor	Näherungssensor	Näherungssensor	Encoder (3) (5)	
AT		Näherungssensor (5)	Näherungssensor (5)	_	-	
AM		Näherungssensor	Näherungssensor	Näherungssensor	- (2)	
SA···DE	SA200DE/S	Näherungssensor (5)	Näherungssensor (5)	Näherungssensor (5)	Encoder (3) (5)	
JA DE	Davon abweichend	Magnetsensor (5) (6)	Magnetsensor(5)(6)	Magnetsensor (5) (6)	Encoder (3) (5) (6)	
TZ		Näherungssensor (5)	Näherungssensor (5)	Näherungssensor (5)	Näherungssensor (2) (5)	

Hinweise (1) Die Montage eines Sensors wird unter Verwendung der entsprechenden Produktbezeichnung angegeben. Bei anderen Modellen sind Sensoren standardmäßig enthalten.

- (3) Jedes Signal ist eine Ausgabe von einer anwendbaren optimierten programmierbaren Steuereinheit oder einem optimierten Treiber.
- (4) In den Tisch sind Sensoren eingebaut und jedes Signal ist eine Ausgabe von einem optimierten Sensor-Signalverstärker. Wenn der AC-Servomotor verwendet wird, verwenden Sie die C-Phase des Encoders für Referenzsignale.
- (5) Sensorpositionen (Encoder) können nicht feinjustiert werden.
- (6) Dies ist im Trägerwerkstoff eingebaut.

Table 2 Fotosensor-Ausführungen

Sensor		Limit, Vor-Referenz	- und Referenzsensor		
	①	2	3	4	
Artikel	PM-L24	PM-K54	PM-T54	PM-L54	
Hersteller		Panasonic Industrial	Devices SUNX Co., Ltd.		
Form (mm)	13,4	25,4	13,7	15,5	
Ausgangsstecker- modelle (1)	_		N-14H-C1 (Steigungslänge: 1 m) o N-14H-C3 (Steigungslänge: 3 m)	der	
Spannung Stromversorgung	DC5~24V ±10%				
Stromverbrauch	15 mA oder weniger				
			: ≤ 30 VDC : ≤ 0,7 V bei Eingangsstrom von 50	mA eei 16 mA	
Ausgabevorgang		AN/AUS bei L	ichteingang; wählbar (²)		
Betriebsanzeige		Rote LED (ON	l bei Lichteingang)		
Schaltplan		Hauptkreis	OUT1 (schwarz) OUT2 (weiss) GND (blau)		

weise (1) Ausgewählt nach anwendbaren Modellen

(2) Bei CT75/75, OUT1 (schwarz) für CW-Limit und CCW-Limit sowie OUT2 (weiß) für Vor-Referenzsensor and Referenzsensor verwenden. Bei allen übrigen Modellen OUT1 (schwarz) verwenden.

Anmerkunge

1. Verdrahten Sie die Sensorkabel selbst.

2. Das Kabel geht mindestens 200 mm über das Tischende hinaus. Die jeweilige Länge variiert je nach Hublänge.

⁽²⁾ Wenn eine Befestigung für AC-Servomotoren oder Linear Encoder ausgewählt wurde, ist kein Referenzsensor enthalten. Verwenden Sie das C-Phasen oder Z-Phasen-Signal des AC-Servomotors oder Linear Encoders, der von Ihnen selbst montiert werden muss. Bei der Baureihe AM ist nur der AC-Servomotor ausgewählt.

Tabelle 3 Ausführungen des Näherungssensors						
Artikel Modell		SA200DE/S	TZ120, TZ200H und TZ200X	Andere Modelle	TZ120	X
Hersteller		Azbil Corporation			OMRON Corp	oration
	Vor-Referenzsensor	APM-D3A1F-015	APM-D3B1F-019	APM-D3B1-017 APM-D3B1F-019 APM-D3B1F-020	E2S-W14 1	
Modell	CW-Limit		APM-D3B1-017	APM-D3B11-020	E2S-W14 1	M
	CCW-Limit	APM-D3A1-013	APM-D3B1F-019	APM-D3B1-018	E2S-W14 1	
	Referenzsensor	Encoder	APM-D3A1-013	APM-D3A1-013	E2S-W13B	
Form mm		Mitte Detektorfläche 25 26 26 27 26 27 26 27 26 27 26 27 27			5,5	
Spannung Strom	versorgung			DC12~24V ±10	0%	
Stromverbrauch			≤ 10 mA		≤ 13 m	ıA
Ausgang		 Maximaler Eingangsstrom: ≤ 30 mA (Widerstandslast) Angelegte Spannung : < DC26.4 V 			NPN offener I Maximaler Eingangsstror Angelegte Spannung Restspannung	
A	Vor-Referenzsensor	AN bei Näherung AUS I		bei Näherung		
Ausgabe-	Limit	AN bei Näherung			pei Näherung	
vorgang	Referenzsensor	Encoder			ei Näherung	
Betriebs-	Vor-Referenzsensor	Orange LED (AN bei Erfassung)		Orange LED	(AUS bei Erfassung)	
anzeige	Limit	Orange LED (AN bei Erfassung)		Orange LED	O (AUS bei Erfassung)	
Referenzsensor				Orange LED	(AN bei Erfassung)	
Schaltplan			Hauptkreis		── Vcc (braun) ── OUT (schwarz) ── GND (blau)	
nmerkungen: 1. Verdrahten Sie die Sensorkabel selbst (außer für NT···V/SC).						

Anmerkungen:

- Verdrahten Sie die Sensorkabel selbst (außer für NT···V/SC).
 Das Kabel geht mindestens 200 mm über das Tischende hinaus. Die jeweilige Länge variiert je nach Hublänge.

Tabelle 4 Ausführungen des Magnetsensors

Table 1 Hastamangen des magnetisensors			
Sensor		ТМ	SA65DE, SA120DE
Spannung Stromversorgung		DC12 bis 24V ±10%	DC5 bis 24V ±10%
Stromverbrauch		≤ 65 mA (¹)	≤ 10 mA
Ausgang (²)		NPN offener Kollektor • Maximaler Eingangsstrom: 12 mA • Angelegte Spannung: ≤ DC36V • Restspannung: ≤ 1,7 V bei Eingangsstrom von 12 mA : ≤ 1,1 V bei Eingangsstrom von 4 mA	NPN offener Kollektor • Maximaler Eingangsstrom: 10 mA • Angelegte Spannung: ≤ DC26,4 V • Restspannung: ≤ 1 V bei Eingangsstrom von 10 mA
Ausgabe-	Vor- Referenzsensor	AUS bei Näherung	AN bei Näherung
vorgang	Limit AUS bei Näherung		AN bei Näherung
	Referenzsensor	AN bei Näherung	Encoder
	Vor-Referenzsensor	Rote LED (AN bei Erfassung)	_
Betriebs-	CW (+) Limit	Gelbe LED (AN bei Erfassung)	_
anzeige	CCW (-) Limit	Rote LED (AN bei Erfassung)	_
	Referenzsensor	Rote LED (AN bei Erfassung)	_
Schaltplan		Vcc AUS Hauptkreis GND	Haupt-kreis GND

Hinweise (1) Stromverbrauch des gesamten Systems einschließlich des Sensor-Signalverstärkers.
(2) Ausgang pro Kreislauf.

III-27

Tabelle 5.1 Anschlussausführungen (NT55V/SC, NT80V/SC, SA200DE/S und LT)

	(11135175C)11100175C,371200D2/3 dild 217			
Pin Nr.	Signalname	Verwendeter Anschluss (Hergestellt von Molex Japan Co., Ltd.)		
141.		Tischseitig	Steckseite	
1	Vor-Referenzsensor (1)			
2	Vor-Referenzsensor			
3	Begrenzung +Richtung			
4	Begrenzung —Richtung			
5	Leistungsaufnahme (für Vor-			
3	Referenzsensor (1)	Cahäusa	Cahäusa	
6	GND (für Vor-Referenzsensor (1)	Gehäuse 1625-12R1	Gehäuse 1625-12P1	
7	Leistungsaufnahme (für Vor- Referenzsensor)	Hauptanschluss	Hauptanschluss	
8	GND (für Vor-Referenzsensor)	1855TL	1854TL	
9	Leistungsaufnahme (für Begrenzung +Richtung)	103312	105112	
10	GND (Begrenzung +Richtung)			
11	Leistungsaufnahme (für Begrenzung — Richtung)			
12	GND (Begrenzung —Richtung)			

Hinweis (1) Für B-Tisch von LT/T2.

Tabelle 5.2 Anschlussausführungen (für TM)

Pin Nr.	Signalname	Verwendeter Anschluss (Hergestellt von Molex Japan Co., Ltd.) Tischseitig Steckseite		
1	Referenzsensor			
2	Vor-Referenzsensor	Gehäuse	Gehäuse	
3	CW-Limit	43020-0600	43025-0600	
4	CCW-Limit	Hauptanschluss	Hauptanschluss	
5	Leistungsaufnahme	43031-0010	43030-0007	
6	GND	.555. 6616	15050 0007	

Anmerkungen: Wenn der AC-Servomotor verwendet wird, verwenden Sie die C-Phase des Encoders oder die Z-Phase des Resolvers für Referenzsignale.

Befestigung.

■ Bearbeitungsgenauigkeit der Montagefläche

Genauigkeit und Leistung des Präzisionspositioniertisches werden durch die Genauigkeit der gegenüberliegenden Montagefläche beeinträchtigt. Daher muss die Bearbeitungsgenauigkeit der Montagefläche gemäß den Anwendungsbedingungen, wie etwa Bewegungsleistung und Positioniergenauigkeit, berücksichtigt werden.

Die Bezugsebenheit der gegenüberliegenden Montagefläche wird unter allgemeinen Anwendungsbedingungen werden in Tabelle 6 angegeben.

Außerdem nimmt der Unterbau, auf welchen der Tisch montiert wurde, eine große reaktive Kraft auf, weshalb der Steifigkeit des Unterbaus ausreichende Aufmerksamkeit geschenkt werden sollte.

Tabelle 6 Genauigkeit der Montagefläche

_					
-	ın	he	ıt.	//	r

<u> </u>	
Modell	Ebenheit der Montageoberfläche
NT···H	5
TX	8
TM	0
TS/CT	
NT···V	
NT···XZ	10
NT···XZH	
SA···DE	
TSLH···M	15
TE···B	
TU	
TSL···M	30
TC···EB	30
LT	
AM	
TSLB	50

■ Anzugsmoment der Fixierschraube

Das typische Anzugsmoment zum Fixieren des Präzisionspositioniertisches wird in Tabelle 7 angegeben. Sollte wiederholt eine plötzliche Beschleunigung / Verzögerung auftreten oder ein Moment angewendet werden, wird empfohlen, den Tisch mit dem 1,3 fachen Anzugsmoment des angegebenen Tabellenwertes zu fixieren. Für den Fall, dass eine hohe Genauigkeit ohne Vibrationen und Stöße benötigt wird, sollten die Schrauben mit einem geringeren Anzugsmoment als in der Tabelle angegeben angezogen und ein Haftmittel verwendet werden, um so ein Lösen der Schrauben zu verhindern.

Tabelle 7 Anzugsmoment der Schraube

Einheit: N·m

	Komponente des Innengewindes			
Schraubengröße	Stahl	Aluminiumlegierung		
			Mit "Helisert"-Einsatz	
M2 ×0.4	0,31			
M3 ×0.5	1,7 (1)	Circa 60 % des Stahlwerts		
M4 ×0.7	4,0			
M5 ×0.8	7,9		Circa 80 % des Stahlwerts	
M6 ×1	13,3			
M8 ×1.25	32,0			
M10×1,25	62,7			

Hinweis (1) Für NT···V wird ein Anzugsmoment von 1,1 N·m empfohlen. (bei Verwendung eines Stahl-Unterbaus)

Vorsichtsmaßnahmen

■ Sicherheitsvorkehrungen

- Stellen Sie sicher, dass der Anschluss geerdet ist (Der Erdungswiderstand beträgt 100 Ω oder weniger). Es besteht die Gefahr elektrischer Entladungen oder Brände.
- · Verwenden Sie nur die auf dem Gerät angegebene Spannung. Ansonsten kann es zu Bränden und Fehlfunktionen kommen.
- Berühren Sie keine elektrischen Teile mit nassen Händen. Dies könnte einen elektrischen Schlag verursachen.
- Kabel nicht gewaltsam verbiegen, drehen, ziehen, erhitzen und keine schwere Last anwenden. Dies könnte einen elektrischen Schlag oder Brände verursachen.
- Finger nicht in Öffnungen stecken, während der Tisch im Betrieb ist. Dies kann zu Verletzungen führen.
- Berühren Sie keine beweglichen Teile, während der Tisch im Betrieb ist. Dies kann zu Verletzungen führen.
- Stellen Sie sicher, dass die Stromzufuhr unterbrochen und der Versorgungsstecker gezogen wurde, bevor Sie die Abdeckung der elektrischen Komponenten entfernen. Es könnte einen elektrischen Schlag verursachen.
- Hauptanschluss nach dem Trennen der Stromzufuhr 5 Minuten nicht berühren. Ansonsten kann es zu einem elektrischen Schlag aufgrund von Restspannung kommen.
- Stellen Sie beim Installieren / Entfernen des Anschlusses sicher, dass vorher die Stromzufuhr unterbrochen und der Versorgungstecker gezogen wurde. Ansonsten kann es zu elektrischen Schlägen und Bränden kommen.

■ Vorsichtsmaßnahmen

- Da es sich bei dem Präzisionspositioniertisch um ein Präzisionsgerät handelt, können eine übermäßige Belastung oder Stöße die Genauigkeit beeinträchtigen und die Teile beschädigen. Berücksichtigen Sie dies daher bei der Bedienung.
- Überprüfen Sie, dass die Montagefläche frei von Staub und schädlichen Graten ist.
- · Verwenden Sie den Tisch in einer sauberen Umgebung, in der er keiner Feuchtigkeit, Öl und Staubpartikeln ausgesetzt ist.
- Da Schmierstoff in die Wälzkörper-Linearführungen und Spindeln des Präzisionspositioniertisches eingebracht wird, müssen Staubschutzmaßnehmen vorgesehen werden, um das Eindringen von Staub und Fremdstoffen in die Einheit zu verhindern. Sollten Fremdmaterialien eindringen, entsorgen Sie das kontaminierte Schmierfett und tragen Sie neues Schmierfett auf.
- Obwohl die Schmierintervalle für Präzisionspositioniertische von den Anwendungsbedingungen abhängen, schmieren Sie in normalen Fällen zwei mal im Jahr und bei Anwendungen mit konstanter Linearbewegung über eine lange Strecke alle drei Monate nach. Außerdem bieten Präzisionspositioniertische mit eingebautem C-Lube eine über einen langen Zeitraum wartungsfreie Leistung. Dies reduziert die Notwendigkeit einer Nachschmierung sowie den Arbeitsaufwand, die für Wälzkörper-Linearführungen und Spindeln notwendig ist und ermöglicht eine weitgehende Reduzierung der Wartungskosten.
- Da der Präzisionspositioniertisch präzise gefertigt und justiert wird, sollte er nicht auseinander gebaut oder verändert werden.
- Produkte mit Linearmotorantrieben verfügen in ihrem Inneren über starke Magneten. Achten Sie darauf, dass magnetische Komponenten in der Nähe eines solchen Produkts angezogen werden könnten. Wenn der Tisch in der Nähe eines für Magnetismus anfälligen Geräts verwendet werden soll, kontaktieren Sie bitte **IKD**.
- Produkte mit Linearmotorantrieb benötigen zum Fahren Parametereinstellungen der programmierbaren Steuereinheit oder eines Treibers. Konfigurieren Sie die für den Antrieb geeigneten Parametereinstellungen korrekt.
- Bei der Linearmotortisch Baureihe LT sind Motorkabel etc. mit dem Verfahrtisch verbunden, weshalb zusätzlich zum Montageraum des Tisches Platz für die Verdrahtung der Kabel freigehalten werden muss. AAußerdem sollte eine Verdrahtung mittels Drähten mit ausreichender Biegefähigkeit gewählt werden, so dass der Laufwiderstand nicht erhöht und keine übermäßige Kraft angewendet wird.

© Die Darstellung/Ausführung der Produkte kann ohne vorherige Ankündigung für Verbesserungszwecke modifiziert werden.

Motorflansch für NEMA-Ausführung

Motorflansche für Motoren in NEMA-Ausführung sind verfügbar. Bitte wenden Sie sich für weitere Informationen an IKO.

Tabelle 1 Motorflansche für Motoren in NEMA-Ausführung (TE-Motor mit Motorumlenkung).

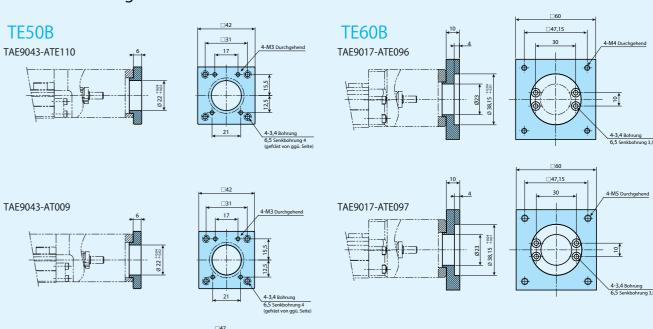
	Modell	NEMA Flansch-Nr.	Innengewinde	Teilenummer Motorflansch	NEMA Wellen-Nr.	Motorwellendurchmesser	
	Modeli					[mm]	[Zoll]
TEG	TE50B	17C	_	TAE9043-ATE110 (1)	020	Ø5	Ø0,1969
	TEOUD		M4	TAE9017-ATE096 (1)			
	TE60B	23D	IVI 4	TAE9017-A1E090(*)	025	Ø6,35	Ø0,25
TEOUB	TEOUD		M5	TAE9017-ATE097 (1)			
	TE86B	34D	M5	TAE9056-ATE095 (1)	038	Ø 9,53	Ø 0,375

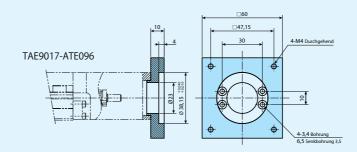
Hinweise (1) Der Motorflansch stellt eine gesonderte Komponente bei der Bestellung des Tisches dar. Keine Kupplung enthalten. Anmerkung: Detaillierte Angaben zum Motorflansch finden Sie im nächsten Abschnitt.

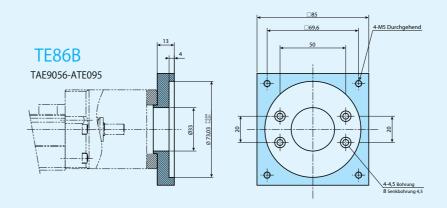
Tabelle 2 Motorflansche für Motoren in NEMA-Ausführung (TU-Motor mit Motorumlenkung).

Modell	NEMA Flansch-Nr.	Innengewinde	Teilenummer Motorflansch	NEMA Wellen-Nr.	Motorwellendurchmesser	
					[mm]	[Zoll]
TU 25, TU 30	(11C)	_	/AT125 (¹)	020 Ø5		Ø0,1969
10 23, 10 30	17C	M2.5	TAE9065-ATE063 (2)		Ø5	
TU 40, TU 50		_	/AT122 (¹)			
	J 60 23D	M4	TAE9059-ATE054 (²)	025 Ø	Ø6,35	Ø0,25
TU 60			TAE9014-ATE094 (2)			
		M5	TAE9014-ATE41 (2)			
		M4	TAE9017-ATE093 (2)			
TU 86		M5	TAE9017-ATE058 (2)			
	- 34D		TAE9056-ATE045 (2)	038	Ø9,53	Ø0,375
			TAE9047-ATE062 (2)			
TU100, TU130	42D	M6	TAE9047-ATE060 (²)	063	Ø15,88	Ø0,625

Hinweise (1) Der Tisch wird mit einer montierten Kupplung geliefert, die in Tabelle 7 auf Seite II-40 angegeben wird. Die endgültige Anpassung sollte jedoch durch den Kunden erfolgen, da sie nur vorübergehend fixiert wird.

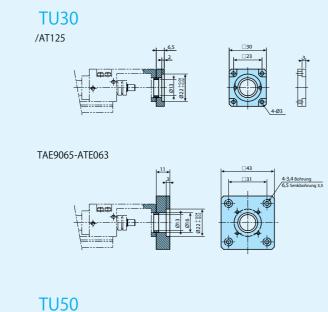

(2) Der Motorflansch stellt eine gesonderte Komponente bei der Bestellung des Tisches dar. Keine Kupplung enthalten.

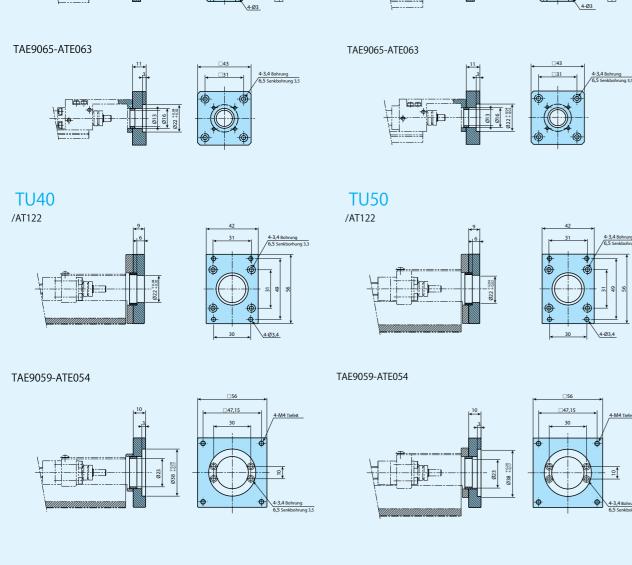

Anmerkung: Detaillierte Angaben zum Motorflansch finden Sie im nächsten Abschnitt.

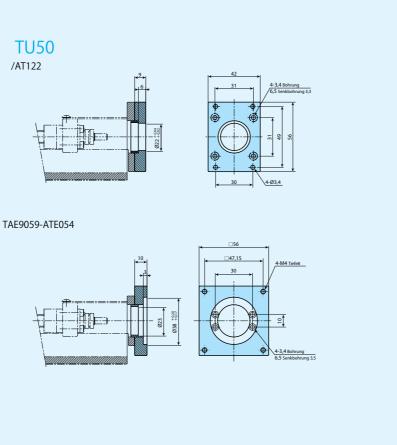

Abmessungen des Motorflansches für NEMA-Ausführung.

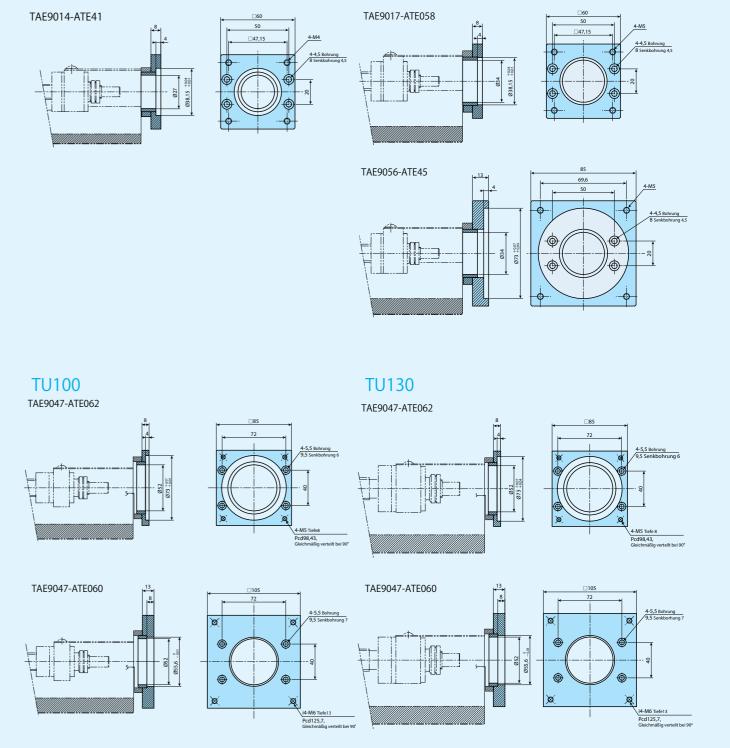
■ TE Motorausführung ohne Motorumlenkung

TAE9073-ATE109



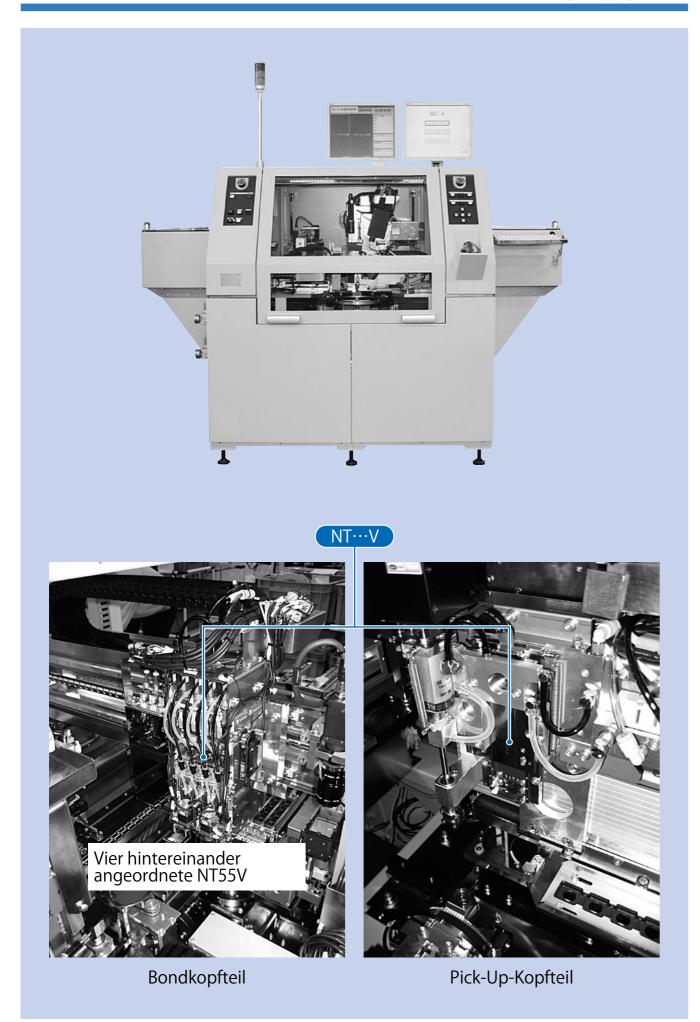

■ TU Ausführung mit Motorumlenkung


TU25 /AT125 TAE9065-ATE063



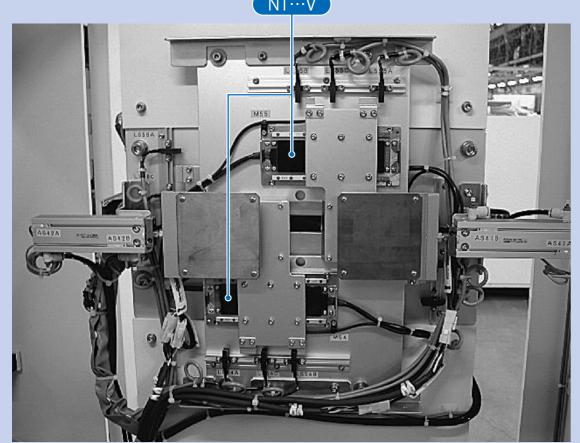
TU60

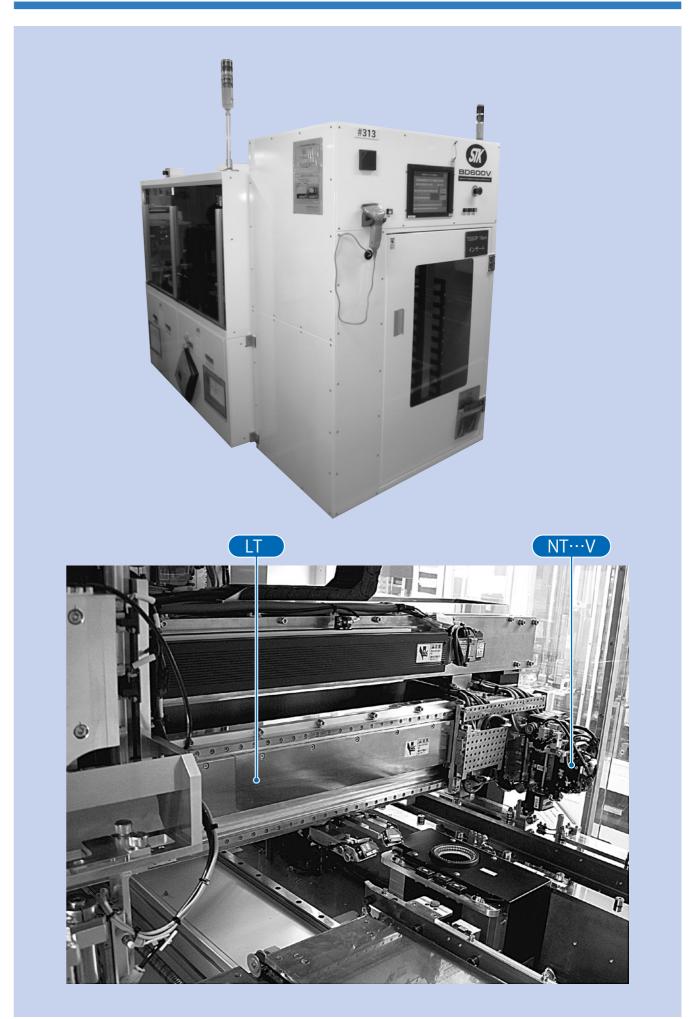
TAE9014-ATE094

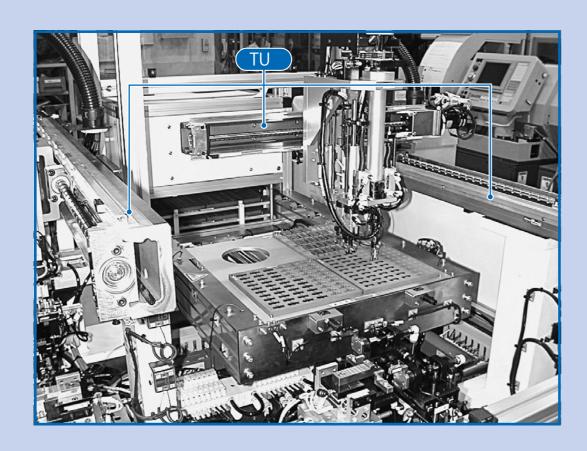


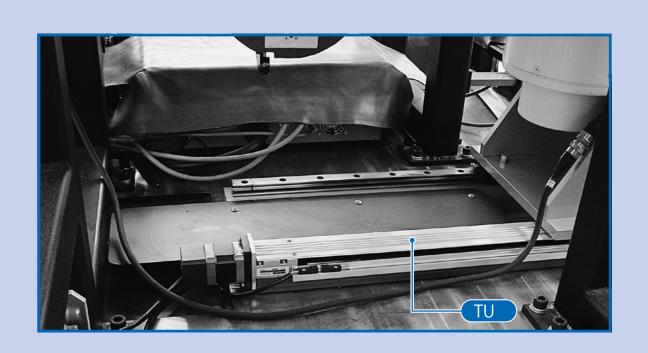
TU86

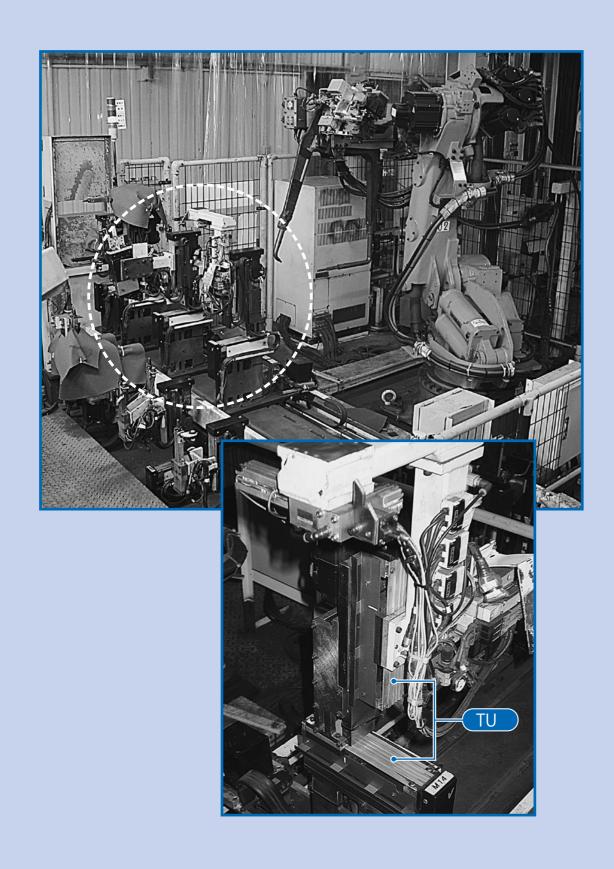
TAE9017-ATE093

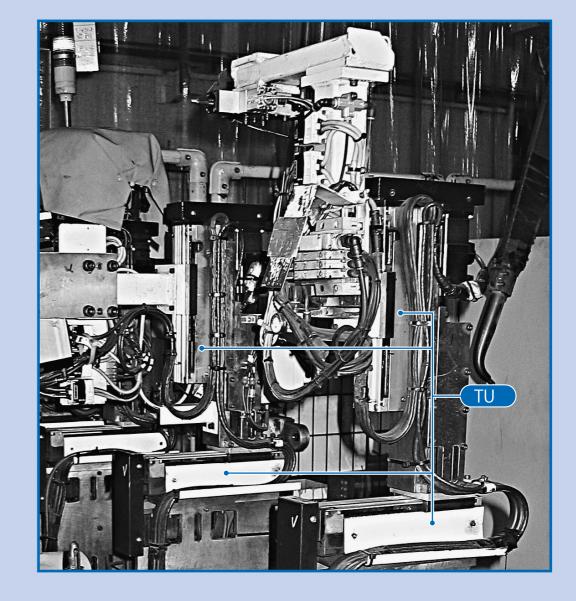

Anwendungsbeispiele

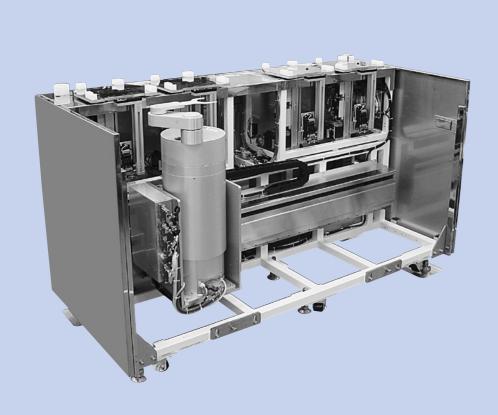


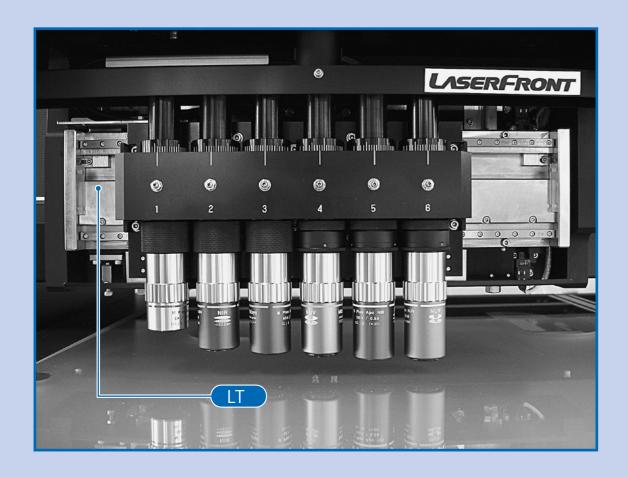


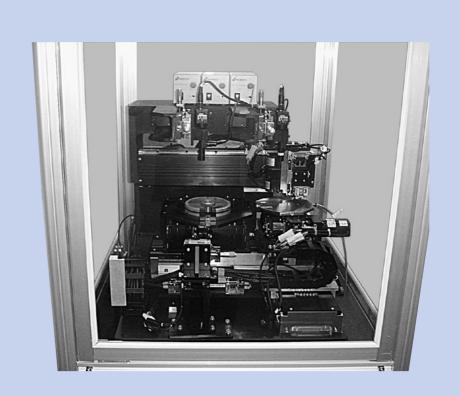


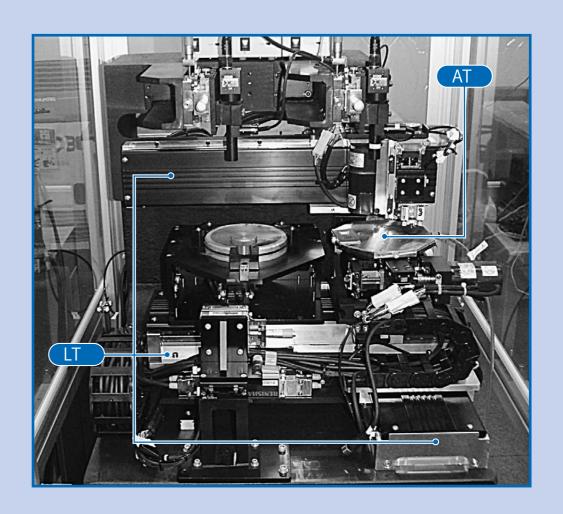


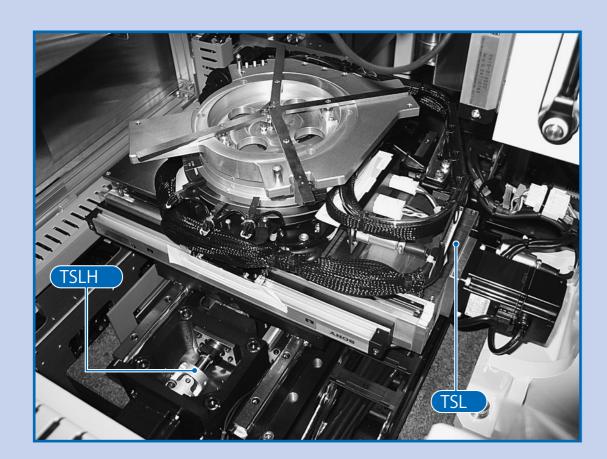


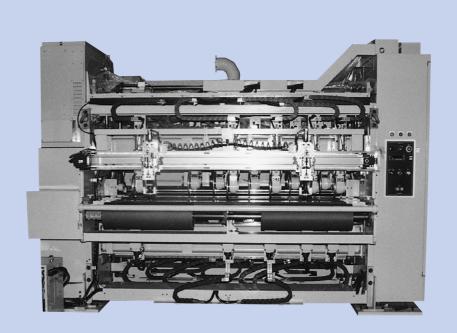


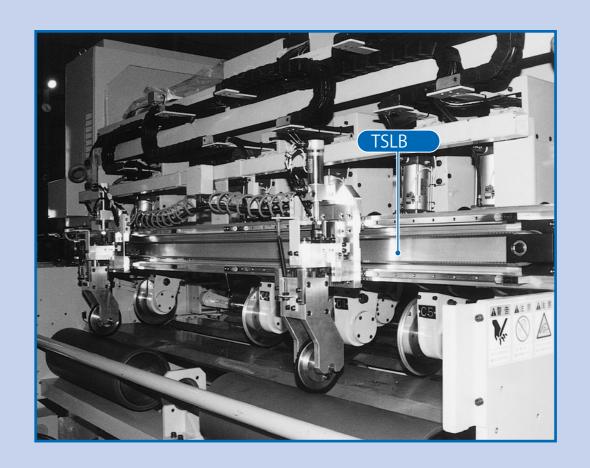


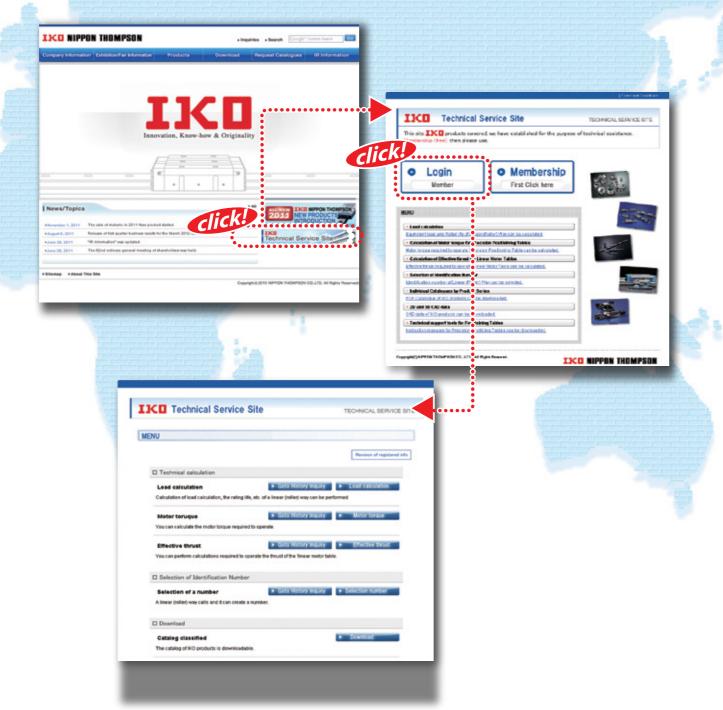












IK Vorstellung technischer Service

Der technische Service von **IKI** kann über unsere Homepage erreicht werden.

Die Website bietet verschiedene Tools o. ä. und weitere Unterstützung zur Auswahl der passenden Kugel- oder Rollenumlaufführungen. Außerdem werden verschiedene CAD-Daten und Produktkataloge für Nadellager, Wälzkörper-Linearführungen und die Mechatronik-Baureihe zum Download angeboten. Diese können Sie zur Erweiterung der Effizienz Ihrer Konstruktion verwenden.

http://www.ikont.co.jp/eg/

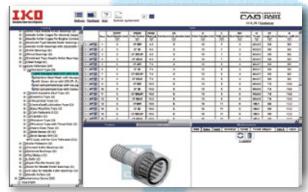
1. Technische Kalkulationen

Im Abschnitt zur Berechnung von Last und Lebensdauer für Kugelund Rollenumlaufführungen erhalten Sie nach Eingabe der Einsatzbedingungen die berechnete Last und die Nennlebensdauer. Aus den Linearantrieb-Tabellen können Sie das Antriebsdrehmoment und die effektive Antriebskraft für den Betrieb ableiten und die berechneten Ergebnisse im PDF-Format darstellen. Verläufe können ebenso gespeichert werden.

2. Auswahl der Produktbezeichnung


Durch Auswahl der gewünschten Ausführung basierend auf Modellcode, Abmessungen, Teilecode, Materialcode, Vorspannungssymbol, Symbol für Genauigkeitsklasse, Austauschbarkeitscode und Zusatzcode der Kugel- und Rollenumlaufführungen kann man leicht die Produktbezeichnung für eine Bestellung zusammensetzen. Die CAD-Daten des benötigten Produktes können ebenfalls ausgewählt und heruntergeladen werden. Anschließend kann eine Lebensdauerberechnung durchgeführt werden, bei der die Möglichkeit der Zwischenspeicherung besteht.

3. Download von CAD-Daten


2-dimensionale CAD-Daten (.dxf)

Es gibt zwei verschiedene Ansichten: Überblick und detailliert. Die Überblicksansicht zeigt die äußeren Linien, und die detaillierte Ansicht alle Linien im Detail. Die Zeichnung besteht aus drei Teilen: Frontansicht, Seitenansicht und Draufsicht. Es wird nur die Originalgröße angezeigt (1:1); Maßlinien fehlen.

3-dimensionale CAD-Daten

Diese Datei ist mit der CAD-Bibliothek "PART community" für mechanische Teile verbunden. Durch Eingabe der Schienenabmessungen und optionalen Angaben zu Details können Sie kostenlos 2D-/3D CAD-Daten für Ihre Ausführung anzeigen.

4. Download von Katalog und Bedienungsanleitung

Produktkataloge für Nadellager, Wälzkörper-Linearführungen und die Mechatronik-Baureihe, Bedienungsanleitungen für Präzisionspositioniertische und verschiedene elektrische Komponenten sind als Download im PDF-Format verfügbar. Außerdem können Sie Supportsoftware für Präzisionspositioniertische herunterladen. Wenn Sie unsere Kataloge in Papierform benötigen, erhalten Sie diese über die **IKD** Homepage.

Oder wenden Sie sich doch bitte an einen Mitarbeiter im regionalen Vertriebsbüro Ihrer Nähe.

Oil Minimum

IK Gentle to The Earth

Nippon Thompson Co., Ltd. strebt danach, umweltfreundliche Produkte zu entwickeln. Nippon verpflichtet sich, Produkte zu entwickeln, die Maschinen und Geräte der Kunden zuverlässiger machen und gleichzeitig zum Erhalt der globalen Umwelt beitragen.

Diese Entwicklung wird durch das Schlüsselwort "Oil Minimum" ausgedrückt.

Der "Oil Minimum"-Ansatz führte zur Entwicklung der patentrechtlich geschützten

IKI "C-Lube"-Schmierkomponenten

IV-19

IXI -Produkte für technologischen Vorsprung

Nippon Thompson Co., Ltd., war der erste japanische Hersteller, der - gestützt auf sein Know-How - in eigenem Namen Nadellager entwickelte. Inzwischen sind Wälzkörper-Linearführungen (Linearführungen und Mechatronik-Baureihe) hinzugekommen. Das Unternehmen bietet eine breite Palette ausgereifter Produkte, einschließlich der weltweit ersten langzeit-wartungsfreien Baureihe mit C-Lube, um so die breit gefächerten Kundenanforderungen zu erfüllen und den technologischen Vorsprung aufrecht zu erhalten.

Langzeit wartungsfreie Baureihe mit C-Lube Entstanden aus dem "Oil Minimum"-Konzept

Unsere Baureihe mit C-Lube wird mit einer großen Menge Schmieröl getränkt und in Lager und Wälzkörper-Linearführungen eingebaut. Dies verringert den Schmieraufwand bei Kunden

Die C-Lube-Baureihe ist lange Zeit wartungsfrei, da kontinuierlich eine optimale sehr geringe Ölmenge aufgebracht wird, was auch zum Schutz der globalen Umwelt beiträgt.

